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1. Introduction

The main aim of these notes is to present some homological aspects of higher cluster tilting theory in
triangulated categories. We concentrate at four themes:

(i) Characterizations and basic properties of cluster tilting subcategories.
(ii) The Gorenstein condition.
(iii) The Calabi-Yau condition.
(iv) Global dimension of non-stable cluster tilting subcategories.

In the following we describe the main results contained in the notes, the starting point of which are the two
basic papers of Keller and Reiten [21, 22].

1.1. Cluster-tilting subcategories. Let T be a triangulated category with split idempotents. We fix a
full subcategory X of T and we assume always that X is closed under isomorphisms, (finite) direct sums and
direct summands.

Definition 1.1. For an integer n ¥ 1, we say that X is pn� 1q-cluster tilting if:

(i) X is functorially finite in T.
(ii) X �  

A P T | TpX, Arisq � 0, 1 ¤ i ¤ n
(
.

(iii) X �  
A P T | TpA,Xrisq � 0, 1 ¤ i ¤ n

(
.

1.2. Some useful tools. There are several tools for the study of an pn� 1q-cluster tilting subcategory X of
T. For the moment, let X be an arbitrary full subcategory of T.

1. Associated with X are the full subcategories, k ¥ 1:

XJk �  
A P T | TpX, Arisq � 0, 1 ¤ i ¤ k

(
and J

kX �  
A P T | TpA,Xrisq � 0, 1 ¤ i ¤ k

(
We call X n-rigid if X � XJn or equivalently X � J

nX. Note that we have a decreasing filtration of T:

T � XJ1 � XJ2 � � � � � XJk � � � � (1.1)
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2. For any k ¥ 0, we consider all morphisms f : A ÝÑ B in T such that TpXrks, fq � 0. The set of all
such morphisms forms a subgroup GhXrkspA,Bq of TpA,Bq, called the subgroup of Xrks-ghost maps and in
this way we obtain an ideal GhXrkspTq. Then the product ideal

Gh
rks
X pTq � GhXpTq � GhXr1spTq � GhXr2spTq � � � � � GhXrk�1spTq

is defined, and clearly Gh
rk�1s
X pA,Bq consists of all maps f : A ÝÑ B which can be written as a composition

f � f0 � f1 � � � � � fk�1, where f0 : A ÝÑ B0 is X-ghost, f1 : B0 ÝÑ B1 is Xr1s-ghost, � � � , fn�1 : Bn�1 ÝÑ B
is Xrk � 1s-ghost.

Then there is an increasing filtration of the Hom-functor Tp�,�q of T:
� � � � Gh

rks
X pTq � � � � � Gh

r2s
X pTq � GhXpTq � Tp�,�q (1.2)

3. The structure of the ideal Gh
rks
X pTq of X-ghost maps is related to the structure of the category

X�Xr1s � � � � �Xrks of extensions of the subcategories Xrks. Recall that if Ai, i � 1, 2, are full subcategories
of T, then A1 �A2 is the full subcategory of T consisting of all direct summands of objects C P T for which
there exists a triangle A1 ÝÑ C ÝÑ A2 ÝÑ A1r1s, where Ai P Ai. The full subcategory A1 �A2 � � � � �Ak is
defined inductively fro full subcategories Ai, 1 ¤ i ¤ k.

Then we have an increasing filtration of T:

X � X � Xr1s � � � � � X � Xr1s � � � � � Xrks � � � � � T (1.3)

4. Finally an indispensable tool for the study of an pn � 1q-cluster tilting subcategory X of T is the
homological functor

H : T ÝÑ mod-X, HpAq � Tp�, Aq|X
defined for any contravariantly finite subcategory X of T, where we denote by mod-X the category of coherent
(or finitely presented) contravariant functors over X. Note that an easy consequence of the fact that X is
contravariantly finite in T, is that mod-X is abelian.

If X is 1-rigid, then the functor H is surjective on objects.

1.3. Relative Homology in T. If X is a full contravariantly finite subcategory of T, then for any object
A P T, there exists a triangle

Ω1
XpAq ÝÑ X0

A ÝÑ A ÝÑ Ω1
XpAqr1s

where the middle map is a right X-approximation of A. Note that the object Ω1
XpAq is uniquely determined

in the stable category T{X. Inductively we define the object Ωk
XpAq, @k ¥ 1. If X is covariantly finite, then

dually the objects Σk
XpAq are defined, @k ¥ 1. The minimum k, or 8, such that Ωk

X lies in X, is well-defined,
it is denoted by gl. dimX T and is called the X-global dimension of T.

Then we have the following characterizations of when a full subcategory X of T is pn � 1q-cluster tilting,
for some n ¥ 1.

Theorem A. Let X be a full subcategory of T, and n ¥ 1. Then the following are equivalent.

(i) X is a pn� 1q-cluster tilting subcategory of T.
(ii) X is contravariantly finite and X � XJn .
(iii) X is covariantly finite and X � J

nX.
(iv) X is contravariantly finite and both X and XJn are n-rigid.
(v) X covariantly finite and both X and JnX are n-rigid.
(vi) X is contravariantly (or covariantly) finite n-rigid and: gl. dimX T � n.
(vii) X is contravariantly (or covariantly) finite n-rigid and: T � X � Xr1s � � � � � Xrns.
(viii) X is contravariantly (or covariantly) finite n-rigid and: Ghrn�1spTq � 0.
(ix) X is contravariantly (or covariantly) finite n-rigid and, @A P T: Ωn

XpAq P X.
(x) X is covariantly (or contravariantly) finite n-rigid and, @A P T: Σn

XpAq P X.
(xi) X is contravariantly finite n-rigid, any object of XJn rn � 1s is injective in mod-X and the functor

H : XJn rn� 1s ÝÑ mod-X is full and reflects isomorphisms.

If X is a pn � 1q-cluster subcategory of T, then XJn�1 � 0 � J
n�1X, the abelian category mod-X has enough

projectives and enough injectives, the functors Xrn � 1s ÝÑ mod-X ÐÝ X are fully faithful and induce
equivalences

Xrn� 1s �ÝÑ Injmod-X and X
�ÝÑ Projmod-X
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1.4. The Gorenstein condition. Let A be an abelian category with enough projectives and enough injec-
tives. Recall the following invariants attached to A :

silpA � suptidP |P P ProjA u, spliA � suptpd I | I P InjA u
G-dimA :� max

 
silpA , spliA

(
We call G-dimA the Gorenstein dimension of A and then A is called Gorenstein if G-dimA   8. If
G-dimA ¤ n   8, then we say that A is n-Gorenstein.

Let X be an pn � 1q-cluster tilting subcategory of T, n ¥ 1. If n � 1, then by a result of Keller-Reiten
[21], the category mod-X is 1-Gorenstein. However this fails for n ¡ 1. To remedy this failure, we consider a
strengthening of the notion of cluster tilting subcategories.

Definition 1.2. An pn� 1q-cluster tilting subcategory X of T is called t-strong, where 1 ¤ t ¤ n, if:

TpX,Xr�isq � 0, 1 ¤ i ¤ t

And X is called strictly t-strong, if X is t-strong but not pt� 1q-strong.
Then we have the following result.

Theorem B. Let T be a triangulated category and X an pn� 1q-cluster tilting subcategory of T.

(i) If n � 1, then G-dimmod-X ¤ 1.
(ii) G-dimmod-X � 0 if and only if X is n-strong.
(iii) Assume that n ¥ 2 and X is pn� kq-strong, where 0 ¤ k ¤ n� 1. Then for n ¥ 2k � 1, the cluster

tilted category mod-X is Gorenstein:

0 ¤ k ¤ n� 1

2
ùñ G-dimmod-X ¤ k

In particular:

(a) If n is odd and X is pn�1
2 q-strong, then: G-dimmod-X ¤ n�1

2 .

(b) If n is even and X is pn�1
2 q-strong, then: G-dimmod-X ¤ n�1

2 .

 Moreover if X is strictly pn� kq-strong, then: G-dimmod-X � k.

As a consequence we have the following which shows that if mod-X has finite global dimension, then it can
be realized as a full subcategory of T, in some cases via a B-functor.

Theorem C. Let X an pn � kq-strong pn � 1q-cluster tilting subcategory of T. If mod-X has finite global
dimension, and n ¥ 2k, then gl. dimmod-X ¤ k and there is an equivalence

Tp�, ?q|X :
�
X � Xr1s � � � � � Xrks�X XJk rk � 1s �ÝÑ mod-X

If k � 1, then the induced full embedding T : mod-X ÝÑ T is a B-functor, which extends uniquely to an
additive functor Dbpmod-Xq ÝÑ T commuting with the shifts.

1.5. The Calabi-Yau condition. Assume that the triangulated category T is k-linear with finite-dimensional
Hom-spaces over a field k. Let X be an pn� 1q-cluster tilting subcategory of T, n ¥ 1. We assume that T ispn� 1q-Calabi-Yau. This roughly means that there are natural isomorphisms:

DHomTpA,Bq �ÝÑ HomTpB,Arn� 1sq
@A,B P T, where D denotes duality with respect to the base field k.

If n � 1, and T is 2-Calabi-Yau, then by a result of Keller-Reiten [22], the stable category GProjmod-X of
the Gorenstein-projective (or Cohen-Macaulay) objects of the 1-Gorenstein category mod-X is 3-Calabi-Yau.

Assuming that n ¥ 1.

Theorem D. Assume that T is pn�1q-Calabi-Yau over a field k, and X is an pn�kq-strong pn�1q-cluster
tilting subcategory of T, 0 ¤ k ¤ n� 1. Then GProjmod-X is pn� 2q-Calabi-Yau in the following cases:

(i) 0 ¤ k ¤ 1, or,
(ii) 2 ¤ k ¤ n�1

2 , and any object Tp�, Cq|X in mod-X, where C P Xr�n � 1s � � � � � Xr�1s, has finite
projective or injective dimension.
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1.6. Global dimension of non stable cluster tilting subcategories. Let A be an abelian category with
enough projective objects. We consider full subcategories M of A , closed under isomorphisms, finite direct
sums and direct summands.

In analogy with the triangulated case, we define for any full subcategory M � A :

MK
n �  

A P A | ExtkpM, Aq � 0, 1 ¤ k ¤ n
(

and K
nM �  

A P A | ExtkpA,Mq � 0, 1 ¤ k ¤ n
(

Then M is called n-rigid if M �MK
n or equivalently M � K

nM.
We are interested in the case M is a lift of a cluster tilting subcategory X of the triangulated category

GprojA of Gorenstein-projective objects of A , in the sense thatM � π�1pXq, where π : GProjA ÝÑ GProjA
is the natural projection functor. Note that then M contains the projectives and at the level of coherent
functors we have an inclusion mod-X � mod-M.

Let U, V be full subcategories of A . Then we define U � V to be the full subcategory

U � V � addtA P A | D an exact sequence : 0 ÝÑ U ÝÑ A ÝÑ V ÝÑ 0, where U P U and V P V(
Inductively we define U1�U2�� � ��Un, @n ¥ 1, for full subcategories Ui of A . Finally we denote by Proj¤k A ,
the full subcategory of A consisting of all objects with projective dimension ¤ k.

Theorem E. Let A be an abelian category with enough projectives. Let X be a full subcategory of GProjA

and set M � π�1X. Then the following are equivalent.

(i) A is Gorenstein and X is an pn� 1q-cluster tilting subcategory of GProjA .

(ii) M is contravariantly finite in A and MK
n X GProjA �M and gl. dimmod-M   8.

If piq holds and X � 0, then K
nMX GProjA �M, we have an equality

A �M � Ω�1M � � � � � Ω�nM � Proj¤dA (1.4)

where G-dimA � d, and gl. dimmod-M is bounded as follows:

n� 2 ¤ gl. dimmod-M ¤ max
 
n,G-dimA

(� 3 (1.5)

Moreover pdmod-M F � n� 2, @F P mod-X, F � 0, and:

paq If G-dimA   n, then: gl. dimmod-M � n� 2.pbq If G-dimA � n, then: gl. dimmod-M P tn� 2, n� 3u.pcq If G-dimA ¡ n, then: n� 2 ¤ gl. dimmod-M ¤ G-dimA � 3.

If GProjA is pn � 1q-Calabi-Yau, then we have relative pn � 2q-Calabi-Yau duality [21]: for any object
F P mod-X � mod-M, there is a natural isomorphism:

DHomDbpmod-Mq
�
F,�� �ÝÑ HomDbpmod-Mq

��, F rn� 2s�
In particular, for any two objects F,G P mod-M with F P mod-X � mod-M:

DExtimod-M

�
F,G

� �ÝÑ Extn�i�2
mod-M

�
G,F

�
, i P Z

As a consequence we have the following, see [21] for the case n � 1.

Theorem F. Let A be an abelian category with enough projectives and enough injectives. For a full
subcategory M � GProjA , the following are equivalent.

(i) A is Frobenius and M is an pn� 1q-cluster tilting subcategory of A .
(ii) M is contravariantly finite in A , contains the projectives, and MK

n �M.
(iii) M is covariantly finite in A , contains the injectives, and KnM �M.
(iv) M is n-rigid, contravariantly in A and contains the projectives, or covariantly finite and contains

the injectives, and gl. dimmod-M � n� 2.

In particular if A is a Krull-Schmidt Frobenius abelian category and X is an pn � 1q-cluster subcategory of
A which is of finite representation type, then

rep. dimA ¤ n� 2

The invariant rep. dimA above is Auslander’s representation dimension, which in this context is defined
to be the minimum of the global dimensions gl. dimmod-EndA pT q, where T runs over all objects such that the
subcategory addT contains the projectives and the injectives and moreover admits weak kernels and weak
cokernels, equivalently the ring EndA pT q is coherent.
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2. Relative Homology

Throughout the paper we denote by T a triangulated category with split idempotents. We fix a full additive
contravariantly finite subcategory X of T which is closed under isomorphisms and direct summands.

Let A be in T and consider triangles

Ωt�1
X pAq gt

A // Xt
A

ft
A // Ωt

XpAq ht
A // Ωt�1

X pAqr1s pT t
Aq

where Ω0
XpAq :� A, and the middle map Xt

A ÝÑ Ωt
XpAq to be a right X-approximation of Ωt�1

X pAq. Applying
the homological functor H : T ÝÑ Mod-X, defined by HpAq � Tp�, Aq|X, to the above triangles we have exact
sequences HpΩt�1

X Aq ÝÑ HpXt
Aq ÝÑ HpΩt

XAq ÝÑ 0, @t ¥ 0. In particular we have an exact sequence which
is a projective presentation of HpAq:

HpX1
Aq ÝÑ HpX0

Aq ÝÑ HpAq ÝÑ 0

It follows that HpAq is coherent and therefore H induces a homological representation functor

H : T ÝÑ mod-X, HpAq � Tp�, Aq|X
Since T, as a triangulated category, has weak kernels, and since X is contravariantly finite in T, it is easy to
see that X has weak kernels and therefore the category mod-X is abelian with enough projectives and it is
well-known that H induces an equivalence X � Projmod-X. Clearly we have

Ker H � XJ :�  
A P T | TpX, Aq � 0

(
Remark 2.1. Dually if X is covariantly finite, then the category X-mod of coherent covariant functors is
abelian and we have a contravariant cohomological functor

Hop : Top ÝÑ X-mod, HpAq � TpA,�q|X
Clearly then Ker Hop � JX :� tA P T | TpA,Xq � 0u.
2.1. Ghost and Cellular Towers. Fix an object A in T and consider as before the triangles

Ωt�1
X pAq gt

A // Xt
A

ft
A // Ωt

XpAq ht
A // Ωt�1

X pAqr1s pT t
Aq

Then, as in [8, Section 5], we may construct inductively a tower of triangles in T containing all the essential
information concerning the homological behavior of A with respect to X, that we need in the sequel. We
proceed as follows: First we form the weak-push-out, in the sense of [8], of the triangle

Ω1
XpAq g0

A // X0
A

f0
A // A

h0
A// Ω1

XpAqr1s pT 0
Aq

along the map h1
A : Ω1

XpAq ÝÑ Ω2
XpAqr1s. Then we obtain a morphism of triangles

Ω1
XpAq g0

AÝÝÝÝÑ X0
A

f0
AÝÝÝÝÑ A

h0
AÝÝÝÝÑ Ω1

XpAqr1s pC0
Aq

h1
A

��� ���α1
A

��� ���h1
Ar1s

Ω2
XpAqr1s β1

AÝÝÝÝÑ Cell1pAq γ1
AÝÝÝÝÑ A

ω1
AÝÝÝÝÑ Ω2

XpAqr2s pC1
Aq

Next consider the weak push-out of the lower triangle along the map h2r1s : Ω2
XpAqr1s ÝÑ Ω3

XpAqr2s:
Ω2

XpAqr1s β1
AÝÝÝÝÑ Cell1pAq γ1

AÝÝÝÝÑ A
ω1

AÝÝÝÝÑ Ω2
XpAqr2s pC1

Aq
h2
Ar1s

��� ���α2
A

��� ���h2
Ar2s

Ω3
XpAqr2s β2

AÝÝÝÝÑ Cell2pAq γ2
AÝÝÝÝÑ A

ω2
AÝÝÝÝÑ Ω3

XpAqr3s pC2
Aq

Continuing in this way we obtain the following tower of triangles, henceforth denoted by pCAq:
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Ω1
XpAq β0

AÝÝÝÝÝÑ Cell0pAq γ0
AÝÝÝÝÝÑ A

ω0
AÝÝÝÝÝÑ Ω1

XpAqr1s pC0
Aq

h1
A

��� ���α1
A

��� ���h1
Ar1s

���
Ω2

XpAqr1s β1
AÝÝÝÝÝÑ Cell1pAq γ1

AÝÝÝÝÝÑ A
ω1
AÝÝÝÝÝÑ Ω2

XpAqr2s pC1
Aq

h2
Ar1s

��� ���α2
A

��� ���h2
Ar2s

���
Ω3

XpAqr2s β2
AÝÝÝÝÝÑ Cell2pAq γ2

AÝÝÝÝÝÑ A
ω2
AÝÝÝÝÝÑ Ω3

XpAqr3s pC2
Aq��� ��� ��� ��� ���

...
...

...
...

...��� ��� ��� ��� ���
Ωn�1

X pAqrn� 2s βn�2
AÝÝÝÝÝÑ Celln�2pAq γn�2

AÝÝÝÝÝÑ A
ωn�2
AÝÝÝÝÝÑ Ωn�1

X pAqrn� 1s pCn�2
A q

hn�1
A

rn�2s
��� ���αn�1

A

��� ���hn�1
A

rn�1s
���

Ωn
XpAqrn� 1s βn�1

AÝÝÝÝÝÑ Celln�1pAq γn�1
AÝÝÝÝÝÑ A

ωn�1
AÝÝÝÝÝÑ Ωn

XpAqrns pCn�1
A q��� ��� ��� ��� ���

...
...

...
...

...

(2.1)

where for convenience we set: Cell0pAq :� X0
A, ω0

A :� h0
A, β0

A :� f0
A, and γ0

A :� g0A. We call the map
γn
A : CellnpAq ÝÑ A the nth-cellular approximations of A and the induced tower

A � Cell0pAq α1
AÝÝÝÝÑ Cell1pAq α2

AÝÝÝÝÑ Cell2pAq ÝÝÝÝÑ � � �
� � � ÝÝÝÝÑ Celln�1pAq αn�1

AÝÝÝÝÑ CellnpAq ÝÝÝÝÑ � � � pCellAq
the cellular tower of A with respect to X, and the tower of objects

A � Ω0
XpAq h0

AÝÝÝÝÑ Ω1
XpAqr1s h1

Ar1sÝÝÝÝÑ Ω2
XpAqr2s ÝÝÝÝÑ � � �

� � � ÝÝÝÝÑ Ωn�1
X pAqrn� 1s hn�1

A rn�1sÝÝÝÝÝÝÝÑ Ωn
XpAqrns ÝÝÝÝÑ � � � pGhAq

is called the Ghost tower, or an Adams resolution, of A with respect to X.

Remark 2.2. (i) By the construction of the cellular tower pCAq we have triangles, @t ¥ 1:

Xt
Art� 1s ÝÝÝÝÑ Cellt�1pAq αt

AÝÝÝÝÑ CelltpAq ÝÝÝÝÑ Xt
Arts (2.2)

Xt
Arts ÝÝÝÝÑ Ωt

XpAqrtsq ht
ArtsÝÝÝÝÑ Ωt�1

X pAqrt� 1s ÝÝÝÝÑ Ωt
XpAqrt� 1sq (2.3)

Since Cell0pAq � X0
A P X, it follows that we have a triangle X0

A ÝÑ Cell1pAq ÝÑ X1
Ar1s ÝÑ X0

Ar1s and
therefore Cell1pAq P X � Xr1s. By induction it follows that:

CelltpAq P X � Xr1s � � � � � Xrts, @t ¥ 0

(ii) Splicing the triangles pT t
Aq we obtain a complex

� � � ÝÑ Xn
A

εnAÝÑ Xn�1
A ÝÑ � � � ÝÑ X1

A

ε1AÝÑ X0
A

f0
AÝÑ A ÝÑ 0 pX

Aq
where εnA � fn

A � gn�1
A , @n ¥ 1. Note that the complex pX

Aq does not necessarily becomes exact after the
application of the functor H.

(iii) If Ωn
XpAq lies in X, then Ωn�t

X pAq lies in X �Xr1s � � � � �Xrn� ts, and we may choose Xn
A � Ωn

XpAq. As
a consequence we may choose Ωn�t

X pAq � 0, @t ¥ 1.
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2.2. Cellular and Co-Ghost Cotowers. Dually if X is covariantly finite in T, then for any object A P T

we may construct inductively triangles pTA
t q, t ¥ 0:

Σt�1
X pAqr�1s hA

t // Σt
XpAq fA

t // XA
t

gA
t // Σt�1

X pAq pTA
t q

where the middle map is a left X-approximation of ΣtpAq, and Σ0
XpAq :� A. As before we may construct

inductively a cotower of (morphisms of) triangles, henceforth denoted by pCA q, @t ¥ 0:

Σt
XpAqr�ts ωA

tÝÝÝÝÑ A
βA
tÝÝÝÝÑ Cellt�1pAq γA

tÝÝÝÝÑ Σt
XpAqr�t� 1s pCA

t q
hA
t�1r�t�1s

��� ��� ���αA
t�1

���hA�t�2

���
Σt�1

X pAqr�t� 1s hA
t�1ÝÝÝÝÑ A

βA
t�1ÝÝÝÝÑ Cellt�2pAq γA

t�1ÝÝÝÝÑ Σt�1
X pAqr�t� 2s pCA

t�1q
where we set: Cell0pAq :� XA

0 , ωA
0 :� hA

0 , βA
0 :� fA

0 , and γA
0 :� gA0 . The inverse tower of objects

� � � ÝÝÝÝÑ Celln�1pAq αA
n�1ÝÝÝÝÑ CellnpAq αA

nÝÝÝÝÑ Celln�1pAq ÝÝÝÝÑ � � �
� � � ÝÝÝÝÑ Cell2pAq αA

2ÝÝÝÝÑ Cell1pAq αA
1ÝÝÝÝÑ Cell0pAq � A pCellA q

is called the cellular cotower of A with respect to X, and the cotower of objects

� � � ÝÝÝÝÑ Σn�1
X pAqr�n� 1s hA

n r�nsÝÝÝÝÝÑ Σn
XpAqr�ns hA

n�1r�n�1sÝÝÝÝÝÝÝÝÑ Σn�1
A r�n� 1s ÝÝÝÝÑ � � �

� � � ÝÝÝÝÑ Σ2
XpAqr�2s hA

1 r�1sÝÝÝÝÝÑ Σ1
XpAqr�1s hA

0ÝÝÝÝÑ Σ0
A � A pGhA q

is called the co-ghost cotower, or an Adams coresolution, of A with respect to X.

Remark 2.3. By the construction of the cellular tower CellA we have triangles, @n ¥ 1:

XA
n r�ns ÝÑ CellnpAq ÝÑ Celln�1pAq ÝÑ XA

n r�n� 1s (2.4)

Since Cell0pAq � XA
0 P X, it follows that we have a triangle XA

1 r�1s ÝÑ Cell1pAq ÝÑ XA
0 ÝÑ XA

1 and
therefore Cell1pAq P Xr�1s � X. By induction it follows that:

CelltpAq P Xr�ts � Xr�t� 1s � � � � � Xr�1s � X, @n ¥ 0

2.3. The functor H : T ÝÑ mod-X. We call an additive functor F : A ÝÑ B between additive categories
A and B almost full if for any map α : F pAq ÝÑ F pBq in B, there are objects A�, B� in A and maps
α� : A� ÝÑ B�, ωA : A� ÝÑ A and ωB : B� ÝÑ B, such that the maps F pωAq : F pA�q ÝÑ F pAq and
F pωBq : F pB�q ÝÑ F pBq are invertible and the following square commutes:

F pA�q F pα�qÝÝÝÝÑ F pB�q
F pωAq

���� F pωBq
����

F pAq αÝÝÝÝÑ F pBq
Clearly F is full if and only if F is almost full and F is full on isomorphisms, i.e. any isomorphism g :
F pXq ÝÑ F pY q is of the form F pfq for some map f : X ÝÑ Y in A .

From now on the above notations will be used without further mentioning.

Now let as before X be a contravariantly finite subcategory of T and assume that X is closed under direct
summands and isomorphisms.

Lemma 2.4. Assume that TpX,Xr1sq � 0.

(i) @A P T: HpΩk
XpAqr1sq � 0, @k ¥ 1. Moreover the map Hpγ1

Aq : HpCell1pAqq ÝÑ HpAq is invertible.
(ii) The functor H : T ÝÑ mod-X is almost full and essentially surjective.

Proof. (i) Applying the homological functor H to the triangle Ωk
XpAq ÝÑ Xk�1

A ÝÑ Ωk�1
X A ÝÑ Ωk

XpAqr1s
and using that TpX,Xr1sq � 0, we see that HpΩk

XpAqr1sq � 0. On the other hand since Hph0
Aq � 0, applying

H to the triangle pC1
Aq : Ω2

XpAqr1s ÝÑ Cell1pAq γ1
AÝÑ A

ω1
AÝÑ Ω2

XpAqr2s and using that HpΩk
XpAqr1sq � 0 and

Hpω1
Aq � Hph0

Aq � Hph1
Ar1sq � 0, we infer that the map Hpγ1

Aq is invertible.
(ii) Let HpX1q ÝÑ HpX0q ÝÑ F ÝÑ 0 be a projective presentation of F P mod-X. If X1 ÝÑ X0 ÝÑ

A ÝÑ X1r1s is a triangle in T, then applying H and using that TpX,Xr1sq � 0, we have that HpAq � F , so H is
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essentially surjective. Let α : HpAq ÝÑ HpBq be a map in mod-X and let HpX1
Aq ÝÑ HpX0

Aq ÝÑ HpAq ÝÑ 0
and HpX1

Bq ÝÑ HpX0
Bq ÝÑ HpBq ÝÑ 0 be projective presentations of HpAq and HpBq. Since H|X is full and

HpXq � Projmod-X, we get a map of projective presentations in mod-X

HpX1
Aq Hpε1AqÝÝÝÝÑ HpX0

Aq Hpf0
AqÝÝÝÝÑ HpAq ÝÝÝÝÑ 0

Hpγq
��� Hpβq

��� α

���
HpX1

Bq Hpε1BqÝÝÝÝÑ HpX0
Bq Hpf0

BqÝÝÝÝÑ HpBq ÝÝÝÝÑ 0

Using that H|X is faithful, we get a morphism of triangles

X1
A

ε1AÝÝÝÝÑ X0
A

α1
AÝÝÝÝÑ Cell1pAq ÝÝÝÝÑ X1

Ar1s
γ

��� β

��� α�
��� ���

X1
B

ε1BÝÝÝÝÑ X0
B

α1
BÝÝÝÝÑ Cell1pBq ÝÝÝÝÑ X1

Br1s
By the construction of the towers pCAq and pCBq we have: α1

A � γ1
A � f0

A and α1
B � γ1

B � f0
B , and by part (i)

the maps Hpγ1
Aq and Hpγ1

Bq are invertible. Consider the diagram:

HpX0
Aq Hpα1

AqÝÝÝÝÑ HpCell1pAqq Hpγ1
AqÝÝÝÝÑ HpAq

Hpβq
��� Hpα�q

��� α

���
HpX0

Bq Hpα1
BqÝÝÝÝÑ HpCell1pBqq Hpγ1

BqÝÝÝÝÑ HpBq
where the left square is commutative. Then Hpα1

Aq �Hpγ1
Aq �α � Hpf0

Aq �α � Hpβq �Hpf0
Bq � Hpβq �Hpα1

Bq �
Hpγ1

Bq � Hpα1
Aq � Hpα�q � Hpγ1

Bq. By Remark 2.2 the cone of α1
A lies in Xr1s, so Hpα1

Aq is an epimorphism.
Then HpγAq � α � Hpα�q � Hpγ1

Bq and the right square is commutative. Hence H is almost full. ¤

3. Ghosts and Extensions

Let as before X be a contravariantly finite subcategory of T. Our aim here is to analyze the structure of
maps in T which are invisible by the functor H : T ÝÑ mod-X, in the sense of the following definition.

Definition 3.1. A map f : A ÝÑ B in T is called X-ghost if TpX, fq � 0; equivalently Hpfq � 0.

We let GhXpA,Bq be the set of all X-ghost maps between A and B. Clearly GhXpA,Bq is a subgroup of

TpA,Bq and it is easy to see that in this way we obtain an ideal GhXpTq of T. We denote by Gh
rns
X pA,Bq

the subset of TpA,Bq consisting of all maps f : A ÝÑ B which can be written as a composition f �
f0 � f1 � � � � � fn�1, where f0 : A ÝÑ B0 is X-ghost, f1 : B0 ÝÑ B1 is Xr1s-ghost, � � � , fn�1 : Bn�1 ÝÑ B is

Xrn� 1s-ghost. Hence Gh
rns
X pTq is the product of ideals GhXrispTq, 0 ¤ i ¤ n� 1:

Gh
rns
X pTq � GhXpTq � GhXr1spTq � GhXr2spTq � � � � � GhXrn�1spTq

Proposition 3.2 (The Ghost Lemma). (i) For a map f : A ÝÑ B in T, the following are equivalent:

(a) f P GhrnsX pA,Bq.
(b) There exists a map g : Ωn

XpAqrns ÝÑ B such that:

f � p�1qn�1h0
A � h1

Ar1s � � � � � hn�1
A rn� 1s � g � ωn�1

A � g
(ii) Let A be an object in T, and consider the following statements:

(a) Ωn
XpAq P X.

(b) A P X � Xr1s � � � � � Xrns.
(c) Gh

rn�1s
X pA,�q � 0.

Then paq ñ pbq ô pcq. In particular: T � X � Xr1s � � � � � Xrns if and only if Gh
rn�1s
X pTq � 0.

Proof. (i) Clearly if f is as in (b), then f lies in Gh
rns
X pA,Bq, since by construction hi

Aris is Xris-ghost,
0 ¤ i ¤ n� 1, cf. (2.4). To show the converse, let n � 1 and f : A ÝÑ B be X-ghost. Then the composition
X0

A ÝÑ A ÝÑ B is zero and therefore it factorizes through h0
A : A ÝÑ Ω1

XpAqr1s. If n � 2 and f : A ÝÑ B

lies in Gh
r2s
X pA,Bq, then f admits a factorization f � f0�f1, where f0 : A ÝÑ B0 is X-ghost and f1 : B0 ÝÑ B

is Xr1s-ghost. Then there exists a map g0 : Ω1
XpAqr1s ÝÑ B0 such that f0 � h0

A � g0. Since f1 is Xr1s-ghost,
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so is g0 � f1 and therefore its composition with the map X1
Ar1s ÝÑ Ω1

XpAqr1s is zero. Hence there exists a
map g : Ω2

XpAqr2s ÝÑ B such that p�h1
Ar1sq �g � g0 �f1. Then f � f0 �f1 � h0

A �g0 �f1 � h0
A � p�h1

Ar1sq �g.
Hence f � �ph0

A � h1
Ar1sq � g � ω1

A � g. The assertion for n ¥ 3 follows by induction.
(ii) paq ñ pbq Since Celln�1pAq lies in X � Xr1s � � � � � Xrn � 1s, it follows that if Ωn

XpAq lies in X, then A

lies in X � Xr1s � � � � � Xrns as follows from the triangle pCn�1
A q in the tower of triangles pCAq.pbq ô pcq If n � 0, i.e. A P X, then clearly Gh

r1s
X pA,�q � GhXpA,�q � 0. Let n � 1, so that A P X �Xr1s,

i.e. there is a triangle X0
αÝÑ A

βÝÑ X1r1s ÝÑ X0r1s, where the Xi lie in X. Let f be in Gh
r2s
X pA,Bq, i.e. f

admits a factorization f � f0 � f1, where f0 : A ÝÑ B0 is X-ghost and f1 : B0 ÝÑ B be Xr1s-ghost. Then
f0 � β � g for some g : X1r1s ÝÑ B0. Since the composition g � f1 : X1r1s ÝÑ B is Xr1s-ghost, we have

g � f1 � 0. Then f � f0 � f1 � β � g � f1 � 0. Hence Gh
r2s
X pA,Bq � 0. For n ¥ 3 the assertion follows by

induction. Conversely if Gh
rn�1s
X pA,�q � 0, then the map ωn

A � h0
A � h1

Ar1s � � � � � hn�1
A rn� 1s � hn

Arns lies in
Gh
rn�1s
X

�
A,Ωn�1

X pAqrns�, and therefore ωn
A � 0. This implies that A lies in X � Xr1s � � � � � Xrns as a direct

summand of CellnpAq P X � Xr1s � � � � � Xrns. ¤

Lemma 3.3. For any t ¥ 0, the map γt
A : CelltpAq ÝÑ A is a right X �Xr1s � � � � �Xrts-approximation of A.

In particular X � Xr1s � � � � � Xrts is contravariantly finite in T.

Proof. Consider the triangle pCt�1
A q : Ωt�1

X pAqrts βt
AÝÑ CelltpAq γt

AÝÑ A
ωt

AÝÑ Ωt�1
X pAqrt�1s. Let g : C ÝÑ A

be a map, where C lies in X � Xr1s � � � �Xrts. Since the map ωt
A lies in Gh

rt�1s
X pA,Ωt�1

X pAqrt� 1sq, it follows
that g � ωt

A lies in Gh
rt�1s
X pC,Ωt�1

X pAqrt� 1sq. Since C P X � Xr1s � � � � � Xrts, by the Ghost Lemma, we have
g � ωt

A � 0 and therefore g factorizes through CelltpAq, i.e. γt
A is a right pX �Xr1s � � � � �Xrtsq-approximation

of A and X � Xr1s � � � � � Xrts is contravariantly finite in T. ¤

Lemma 3.4. For any objects A,B P T and any t ¥ 1, we have an equality:

Gh
rt�1s
X pA,Bq � GhX�Xr1s�����XrtspA,Bq

Proof. If f : A ÝÑ B lies in GhX�Xr1s�����XrtspA,Bq, then the composition γt
A � f is zero since CelltpAq P

X�Xr1s � � � � �Xrts. Hence f factorizes through ωt
A : A ÝÑ Ωt�1

X pAqrt�1s, say as f � ωt
A � g. Since ωt

A lies in

Gh
rt�1s
X pA,Ωt�1

X pAqrt�1sq, f lies in Gh
rt�1s
X pA,Bq. Hence GhX�Xr1s�����XrtspA,Bq � Gh

rt�1s
X pA,Bq. Conversely

if f lies in Gh
rt�1s
X pA,Bq, then by the Ghost Lemma we have f � ωt

A � g for some g : Ωt�1
X pAqrt� 1s ÝÑ B.

This implies that γt
A � f � 0. Since, by Lemma 3.3, γt

A is a right X �Xr1s � � � � �Xrts-approximation of A, we
have TpC, fq � 0, @C P X �Xr1s � � � � �Xrts, so f lies in GhX�Xr1s�����XrtspA,Bq. The last assertion is clear. ¤

Remark 3.5. For any integer n ¥ 1, we define Gh
r�ns
X pA,Bq to be the subgroup of TpA,Bq consisting of

all maps f : A ÝÑ B which can be written as a composition f � f�n�1 � f�n�2 � � � � � f�1 � f0, where
f�i : B�i�1 ÝÑ B�i is Xr�is-ghost, A � B�n and B0 � B. Clearly then the map

Gh
r�ns
X pA,Bq ÝÑ Gh

rns
X pArn� 1s, Brn� 1sq, f ÝÑ f rn� 1s

is an isomorphism. It follows from Lemma 3.4 that we have an isomorphism GhXr�ns�����Xr�1s�XpA,Bq �
GhX�Xr1s�����XrnspArns, Brnsq.

Clearly if X � Y, then GhYpA,Bq � GhXpA,Bq. Hence the increasing filtration by subcategories of T

X � X � Xr1s � X � Xr1s � Xr2s � � � � � X � Xr1s � � � � � Xrts � � � � � T (3.1)

induces a decreasing filtration of its Hom-functor of T by ghost ideals:

� � � � Gh
rt�1s
X pTq � � � � � Gh

r2s
X pTq � GhXpTq � Tp�,�q (3.2)

By the Ghost Lemma it follows that the above filtrations have the same length.

Proposition 3.6. Let X be a contravariantly finite subcategory of T. Then there exists an exact sequence

0 ÝÑ GhXpA,Bq ÝÑ TpA,Bq ÝÑ HomrHpAq,HpBqs ÝÑ GhXpΩ1
XpAq, Bq ÝÑ Gh

r2s
X pA,Br1sq ÝÑ 0

for any objects A,B P T, where HA,B : TpA,Bq ÝÑ HompHpAq,HpBqq is the canonical map.
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Proof. We construct maps

ϑA,B : HompHpAq,HpBqq ÝÑ GhXpΩ1
XpAq, Bq and ζA,B : GhXpΩ1

XpAq, Bq ÝÑ Gh
r2s
X pA,Br1sq

as follows. Let α : HpAq ÝÑ HpBq be a map and consider the triangle Ω1
XpAq ÝÑ X0

A ÝÑ A ÝÑ Ω1
XpAqr1s.

Then we have an exact sequence HpΩ1
XpAqq ÝÑ HpX0

Aq ÝÑ HpAq ÝÑ 0 in mod-X. Then the composition
Hpf0

Aq � α : HpX0
Aq ÝÑ HpAq ÝÑ HpBq is of the form Hpα�q for a unique map α� : X0

A ÝÑ B. Define
ϑA,Bpαq � g0A � α� : Ω1

XpAq ÝÑ B. Clearly g0A � α� is X-ghost since Hpg0A � α�q � Hpg0Aq � Hpα�q � Hpg0Aq �
Hpf0

Aq �α � 0. Now in α P HompHpAq,HpBqq lies in Ker ϑA,B , then ϑA,Bpαq � g0A �α� � 0, then α� � f0
A � β

for some map β : A ÝÑ B and then Hpf0
Aq � α � Hpα�q � Hpf0

Aq � Hpβq and therefore α � Hpβq. Conversely
if α � Hpβq, for some map β : A ÝÑ B, then α� � f0

A � β and then ϑA,Bpαq � g0A � α� � g0A � f0
A � β � 0.

Hence Ker ϑA,B � ImHA,B . On the other hand, if α : Ω1
XpAq ÝÑ B is an X-ghost map, then since h0

Ar�1s is
clearly Xr�1s-ghost and α is X-ghost, it follows by the above Lemma that h0

Ar�1s�α P GhXr�1s�XpAr�1s, Bq,
hence by Remark 3.5, we have a map ζA,B : GhXpΩXpAq, Bq ÝÑ Gh

r2s
X pA,Br1sq, α ÞÝÑ ζA,Bpαq � h0

A � αr1s.
We show that ζA,B is surjective. Let α : A ÝÑ Br1s be a map in Gh

r2s
X pA,Br1sq, so α � β � γ, where

β P GhXpA,Cq and γ P GhXr1spC,Br1sq. By the Ghost Lemma, β � h0
A �ρ, for some map ρ : Ω1

XpAqr1s ÝÑ C.

Then the map pρ � γqr�1s : Ω1
XpAq ÝÑ B is X-ghost and ζA,Bppρ � γqr�1sq � α, so ζA,B is surjective. Finally

we show that Ker ζA,B � ImϑA,B . Let β : Ω1
XpAq ÝÑ B be X-ghost such that ζA,Bpβq � h0

A � βr1s � 0.
Then β � g0A � γ, for some map γ : X0

A ÝÑ B. Since 0 � Hpβq � Hpg0Aq � Hpγq, there exists a unique map
α : HpAq ÝÑ HpBq such that Hpf0

Aq�α � Hpγq. It follows that ϑA,Bpαq � g0A�γ � β, i.e. Ker ζA,B � ImϑA,B .
Finally if δ : Ω1

XpAq ÝÑ B is in the image of ϑA,B , then δ � g0A � δ� for some map δ� : X0
A ÝÑ B. Plainly

ζA,Bpδq � h0
A � g0Ar1s � δ�r1s � 0, i.e. δ P Ker ζA,B . Hence Ker ζA,B � ImϑA,B and the sequence is exact. ¤

We say that a map α : HpAq ÝÑ HpBq is realizable (with respect to H), if α � Hpα�q for some map
α� : A ÝÑ B. The obstruction group OA,B of the objects A,B P T is defined as the cokernel of the
natural map HA,B : TpA,Bq ÝÑ HompHpAq,HpBq. Clearly OA,B � 0 if and only if any map HpAq ÝÑ HpBq
is realizable, and OA,B � 0, @A,B P T, if and only if H is full.

Corollary 3.7. Let X be a contravariantly finite subcategory of T. If TpX,Xr1sq � 0, then @A P X �Xr1s we
have OA,B � 0, @B P T, i.e. there is an exact sequence:

0 ÝÑ GhXpA,Bq ÝÑ TpA,Bq ÝÑ HomrHpAq,HpBqs ÝÑ 0

Moreover the functor H induces an equivalence:
�
X � Xr1s�{Xr1s �ÝÑ mod-X.

Proof. If A P X�Xr1s, then there is a triangle X1 ÝÑ X0 ÝÑ A ÝÑ X1r1s, where Xi P X. Since TpX,Xr1sq �
0, the map X0 ÝÑ A is a right X-approximation, hence X1 � Ω1

XpAq. It follows that GhXpΩ1
XpAq,�q � 0

and then by Proposition 3.6, the map HA,B : TpA,Bq ÝÑ HomrHpAq,HpBqs is surjective, @B P T. In
particular H : X � Xr1s ÝÑ mod-X is full. If α : A ÝÑ B is X-ghost, then by the Ghost Lemma, α factorizes
through h1

A : A ÝÑ Ω1
XpAqr1s. Since Ω1

XpAqr1s � X1r1s, we infer that GhXpA,Bq is the subgroup of all
maps factorizing through an object from Xr1s. Finally let F � HpAq be in mod-X and consider the triangle

pC1
Aq : Ω2

XpAqr1s β1
AÝÑ Cell1pAq γ1

AÝÑ A
ω1

AÝÑ Ω2
XpAqr2s. Since TpX,Xr1sq � 0, we have HpΩ2

XpAqr1sq � 0
and since ω1

A is X-ghost, we have Hpω1
Aq � 0. Hence the map Hpγ1

Aq : HpCell1pAqq ÝÑ HpAq is invertible, i.e.
H : X � Xr1s ÝÑ mod-X is surjective on objects. ¤

Proposition 3.8. Let X be a contravariantly finite subcategory of T. Then for any object A P T such that
TpX, Ar�1sq � 0, there exists a 7-term exact sequence:

0 ÝÑ GhXpA,Bq ÝÑ TpA,Bq HA,BÝÑ Hom
�
HpAq,HpBq� ϑA,BÝÑ GhXpΩXpAq, Bq ηA,BÝÑ

GhXpA,Br1sq ξA,BÝÑ Ext1
�
HpAq,HpBq�ÝÑ OΩXpAq,B ÝÑ 0 (3.3)

where ImpϑA,Bq � OA,B and ImpηA,Bq � Gh
r2s
X pA,Br1sq.

Proof. Applying H to the triangle ΩXpAq ÝÑ X0
A ÝÑ A ÝÑ ΩXpAqr1s and using that HpAr�1sq � 0, we

have an exact sequence 0 ÝÑ HpΩXpAqq ÝÑ HpX0
Aq ÝÑ HpAq ÝÑ 0 and an exact commutative diagram

� � � ÝÝÝÝÝÑ TpA,Bq ÝÝÝÝÝÑ TpX0
A, Bq Tpg0A,BqÝÝÝÝÝÑ TpΩXpAq, Bq ÝÝÝÝÝÑ ImTph0

Ar�1s, Bq ÝÝÝÝÝÑ 0

HA,B

��� H
X0

A
,B

���� HΩXpAq,B
��� φ

���
0 ÝÝÝÝÝÑ pHpAq,HpBqq ÝÝÝÝÝÑ pHpX0

Aq,HpBqq ÝÝÝÝÝÑ pHpΩXpAqq,HpBqq ÝÝÝÝÝÑ Ext1pHpAq,HpBqq ÝÝÝÝÝÑ 0
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and we know that Ker HA,B � GhXpA,Bq, Coker HA,B � OA,B , and Ker HΩXpAq,B � GhXpΩXpAq, Bq, and
Coker HΩXpAq,B � OΩXpAq,B . Moreover the above diagram induces an exact sequence:

0 ÝÑ OA,B ÝÑ GhXpΩXpAq, Bq ÝÑ ImTph0
Ar�1s, Bq φÝÑ Ext1pHpAq,HpBqq ÝÑ Coker φ ÝÑ 0

By chasing the above diagram we see easily that Coker φ � Coker HΩXpAq,B � OΩXpAq,B and ImTph0
Ar�1s, Bq� GhXr�1spAr�1s, Bq and Ker φ � GhXr�1s�XpAr�1s, Bq. Since, by Remark 3.5, we have isomorphisms:

GhXr�1spAr�1s, Bq � GhXpA,Br1sq and GhXr�1s�XpAr�1s, Bq � Gh
r�2s
X pAr�1s, Bq � Gh

r2s
X pA,Br1sq, p3.3q

follows by splicing the above exact sequence with the exact sequence of Proposition 3.6. ¤

Corollary 3.9. Let X be a contravariantly finite subcategory of T, and assume that TpX, Ar�1sq � 0.

(i) If Ω2
XpAq P X, then, @B P T, there is an isomorphism

Ext1pHpAq,HpBqq �ÝÑ GhXpA,Br1sq
Gh2XpA,Br1sq

(ii) If A P X � Xr1s and TpX,Xr1sq � 0, then, @B P T, there is an isomorphism:

Ext1pHpAq,HpBqq �ÝÑ GhXpA,Br1sq
(iii) If A,B P X � Xr1s and TpX,Xr1sq � 0 � TpX,Xr2sq, then there is an isomorphism:

Ext1pHpAq,HpBqq �ÝÑ TpA,Br1sq
Proof. (i) Since Ω2

XpAq P X, it follows that Ω1
XpAq P X � Xr1s. Then by Corollary 3.7 we have OΩ1

X
pAq,B � 0,

@B P T, and the assertion follows from (3.3).
(ii), (iii) If A P X � Xr1s and TpX,Xr1sq � 0, then ΩXpAq P X. Hence GhXpΩ1

XpAq, Bq � 0 � OΩ1
X
pAq,B and

the map GhXpA,Br1sq ÝÑ Ext1pHpAq,HpBqq is invertible. Finally assume that in addition TpX,Xr2sq � 0
and B P X �Xr1s. Then there exists a triangle X1 ÝÑ X0 ÝÑ B ÝÑ X1r1s where the Xj lie in X. Applying
H and using that TpX,Xrisq � 0, 1 ¤ i ¤ 2, it follows that HpBr1sq � 0. In particular any map A ÝÑ Br1s
is X-ghost. Hence by (ii), GhXpA,Br1sq � TpA,Br1sq and (iii) follows from (ii). ¤

Corollary 3.10. Let X be a contravariantly finite subcategory of T. Let t ¥ 2 and assume that TpX,Xr�isq �
0, 1 ¤ i ¤ t� 1. Then for any A P T such that TpX, Ar�isq � 0, 1 ¤ i ¤ t, and any object B P T, there exists
an exact sequence, 1 ¤ i ¤ t� 1:

0 ÝÑ GhXpΩi
XpAq, Bq ÝÑ TpΩi

XpAq, Bq ÝÑ Hom
�
HpΩi

XpAqq,HpBq� ÝÑ GhXpΩi�1
X pAq, Bq ÝÑ

GhXpΩi
XpAq, Br1sq ÝÑ Exti�1

�
HpAq,HpBq�ÝÑ OΩi�1

X
pAq,B ÝÑ 0 (3.4)

Proof. Applying the functor H to the triangles Ωi
XpAq ÝÑ Xi�2

A ÝÑ Ωi�1
X pAq ÝÑ ΩipAqr1s, i ¥ 0, and using

the vanishing conditions of the statement, we see easily that we have TpX,Ωk
XpAqr�t�ksq � 0, 1 ¤ k ¤ t�1.

As consequence we have short exact sequences 0 ÝÑ HpΩk
XpAqq ÝÑ HpXk�1

A q ÝÑ HpΩk�1
X pAqq ÝÑ 0,

1 ¤ k ¤ t, so ΩkHpAq � HpΩk
XpAqq, 1 ¤ k ¤ t. Since TpX,Ωk

XpAqr�1sq � 0, 1 ¤ k ¤ t � 1, the existence of
(3.4) follows from Proposition 3.8, by replacing A with Ωi

XpAq. ¤

Lemma 3.11. For any objects A,B P T and any k ¥ 0, there is an epimorphism:

ϕk
A,B : GhXpΩk

XpAq, Br1sq ÝÑ Gh
rk�1s
X pA,Brk � 1sq ÝÑ 0

which is an isomorphism for 0 ¤ k ¤ n, if TpX, Brisq � 0, 1 ¤ i ¤ n. In this case we have a isomorphisms

ϕk
A,B : TpΩk

XpAq, Br1sq �ÝÑ TpA,Brk � 1sq and ϕn
A,B : TpΩn

XpAq, Br1sq �ÝÑ Ghn�1
X pA,Brn� 1sq

for 1 ¤ k ¤ n. In particular we have a monomorphism 0 ÝÑ TpΩn
XpAq, Br1sq ÝÑ TpA,Brn� 1sq.

Proof. Define ϕk
A,Bpαq � ωk�1

A � αrks. Since ωk�1
A lies in GhkXpA,Ωk

XpAqrksq and since αrks is Xrks-ghost, it
follows that ϕk

A,Bpαq lies in Ghk�1
X pA,Brk � 1sq. Now if β : A ÝÑ Brk � 1s lies in Ghk�1

X pA,Brk � 1sq, by
the Ghost Lemma, there exists a map γ : Ωk�1

X pAq ÝÑ Brk � 1s such that β � ωk
A � γ � ωk�1

A � hk
Arks � γ.

Clearly the map hk
A � γr�ks : Ωk

XpAq ÝÑ Br1s is X-ghost and ϕk
A,Bphk

A � γr�ksq � ωk�1
A � hk

Arks � γ �
ωk
A � γ � β, so ϕk

A,Bpαq is surjective. Assume now that TpX, Brisq � 0, 1 ¤ i ¤ n and let α P Kerϕk
A,B ,

where 1 ¤ k ¤ n. Then ωk�1
A � αrks � 0 and therefore αrks factorizes through the cone Cellk�1pAqr1s of

ωk�1
A . Since Cellk�1pAqr1s lies in pX � Xr1s � � � �Xrk � 1sqr1s � Xr1s � � � � � Xrks, it is easy to see that the

condition TpX, Brisq � 0, 1 ¤ i ¤ k forces any map from an object in Xr1s � � � � � Xrks to Brk � 1s to be
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zero. Hence αrks or equivalently α is zero. We infer that ϕk
A,B is injective for 0 ¤ k ¤ n. Now observe

that, since TpX, Br1sq � 0, we have GhXpΩk
XpAq, Br1sq � TpΩk

XpAq, Br1sq, @k ¥ 0. We show by induction on

k that Gh
rks
X pA,Brksq � TpA,Brksq, 1 ¤ k ¤ n. Indeed if k � 1, then any map α : A ÝÑ Br1s is X-ghost

since TpX, Br1sq � 0. If k � 2 and α : A ÝÑ Br2s is a map, then since TpX, Br2sq � 0, the composition
X0

A ÝÑ A ÝÑ Br2s is zero and therefore α � h0
A � α1 for some map α1 : Ω1

XpAqr1s ÝÑ Br2s. Clearly α1 is

Xr1s-ghost since TpX, Br1sq � 0. Hence α lies in Gh
r2s
X pA,Br2sq and therefore Gh

r2s
X pA,Br2sq � TpA,Br2sq.

Continuing in this way and using that k ¤ n, we see that any map α : A ÝÑ Brk� 1s admits a factorization

α � ωk
A � αk�1rks for some map αk�1 : Ωk�1

X pAqr1s ÝÑ Br1s. It follows that α lies in Gh
rk�1s
X pA,Brk � 1sq

and therefore Gh
rk�1s
X pA,Brk � 1sq � TpA,Brk � 1s for 0 ¤ k ¤ n. ¤

Corollary 3.12. Let X be a contravariantly finite subcategory of T. Let t ¥ 2 and assume that TpX,Xr�isq �
0, 1 ¤ i ¤ t � 1, and TpTpX,Xrisq � 0, 1 ¤ i ¤ t. Let A P T be such that: A P X � Xr1s � � � � � Xrts and
TpX, Ar�isq � 0, 1 ¤ i ¤ t. Then @B P T, we have Extt�1pHpAq,HpBqq � 0, so pdHpAq ¤ t, and:

Extt
�
HpAq,HpBq� �ÝÑ GhXpΩt�1

X pAq, Br1sq and Extt�1
�
HpAq,HpBq� �ÝÑ GhXpΩt�2

X pAq, Br1sq
Gh
r2s
X pΩt�2

X pAq, Br1sq
If in addition TpX, Br1sq � � � � � TpX, Brt� 1sq � 0, then: Extt

�
HpAq,HpBq� �ÝÑ Gh

rts
X pA,Brtsq.

Proof. The assumptions on A imply easily that Ωt
XpAq P X, see Proposition 4.3(iii) below. Then Ωt�1

X pAq P
X �Xr1s, and therefore we have OΩk

X
pAq,� � 0, for k � t, t� 1, and GhXpΩt

XpAq,�q � 0. It follows from (3.4),

for i � t, that Extt�1pHpAq,HpBq � 0. Next setting i � t � 1 in (3.4), we have the first isomorphism, and
setting i � t� 2 in (3.4) we have the second isomorphism. Finally if TpX, Brisq � 0, 1 ¤ i ¤ t� 1, Corollary

3.11 shows that GhXpΩt�1
X pAq, Br1sq � Gh

rts
X pA,Brts and therefore the last isomorphism follows. ¤

4. Rigid Subcategories

Throughout this section we fix a triangulated category T and a contravariantly finite subcategory X of T
which is closed under direct summands and isomorphisms.

For n ¥ 1, we consider the following subcategories associated to X:

XJn :�  
A P T | TpX, Arisq � 0, 1 ¤ i ¤ n

(
and J

nX :�  
A P T | TpA,Xrisq � 0, 1 ¤ i ¤ n

(
We also set: XJ :� XJ0 � tA P T |TpX, Aq � 0u and JX :� J

0 X � tA P T |TpA,Xq � 0u.
Observe that XJ � XJ0 � XJ1 r1s and JX � J

0 X � pJ1 Xqr�1s, and we have filtrations:

T � XJ1 � XJ2 � � � � � XJn � � � � (4.1)

X � X � Xr1s � � � � � X � Xr1s � � � � � Xrns � � � � � T (4.2)

Definition 4.1. A full subcategory X � T is called n-rigid, n ¥ 1, if: TpX,Xrisq � 0, 1 ¤ i ¤ n.

It follows that that X is n-rigid if and only if X � XJn or equivalently X � J
nX. We show that that

contravariantly finite n-rigid subcategories in T give rise to torsion pairs in the sense of the following definition,
see [12], [16]. A pair pX,Yq of full subcategories of T is called a torsion pair in T, if TpX,Yq � 0 and for any
object A in T there is a triangle XA ÝÑ A ÝÑ Y A ÝÑ XAr1s, where XA P X and Y A P Y. A triple pX,Y,Zq
of subcategories of T is called a torsion triple if pX,Yq and pY,Zq are torsion pairs.

If pX,Yq is a torsion pair in T, then clearly the map XA ÝÑ A is a right X-approximation of A, and the
map A ÝÑ Y A is a left Y-approximation of A. Hence X is contravariantly finite and Y is covariantly finite in
T. Moreover it is easy to see that XJ � Y and JY � X, and XX Y � 0.

Proposition 4.2. If X is n-rigid, n ¥ 1, then we have the following.

(i) Ωt
XpAq P XJ1 , t ¥ 1, and Ωt

XpAq P XJt , 1 ¤ t ¤ n.
(ii) H

�
Xr1s � Xr2s � � � � Xrns� � 0 and there is a torsion pair�

X � Xr1s � Xr2s � � � � � Xrt� 1s, XJt rts�, 1 ¤ t ¤ n p�q
The map γt�1

A : Cellt�1pAq ÝÑ A is a right pX � Xr1s � � � � � Xrt � 1sq-approximation of A, the map

Hpγt�1
A q is invertible, and the map ωt�1

A : A ÝÑ Ωt
XpAqrts is a left XJt rts-approximation of A.

(iii) @t � 1, 2, � � � , n: Ωt
XpAq P X if and only if A P X � Xr1s � � � � � Xrts.
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Proof. (i) Consider the triangles associated to A constructed before:

Ωt
XpAq ÝÑ Xt�1

A ÝÑ Ωt�1
X pAq ÝÑ Ωt

XpAqr1s pT t
Aq

Applying the homological functor H : T ÝÑ mod-X to the triangles pT t
Aq and using that X is n-rigid, it

follows that HpΩt
XpAqr1sq � 0, @t ¥ 1, and HpΩt

XpAqrisq � HpΩt�1
X pAqri � 1sq, for 1 ¤ t ¤ n � 1 and

1 ¤ i ¤ n � 1. Hence for any t � 1, 2, � � � , n, we have: HpΩt
XpAqrtsq � HpΩt�1

X pAqrt � 1sq � � � � �
HpΩ2

XpAqr2sq � HpΩ1
XpAqr1sq � 0. It follows that Ωt

XpAq P XJt , 1 ¤ t ¤ n, and Ωt
XpAq P XJ1 , @t ¥ 1.

(ii), (iii) Since @A P T we have a triangle, where Cellt�1pAq P X �Xr1s � � � � �Xrt� 1s and Ωt
XpAqrts P XJt rts,

Cellt�1pAq γt�1
AÝÑ A

ωt�1
AÝÑ Ωt

XpAqrts βt�1
A r1sÝÑ Cellt�1pAqr1s p:q

it suffices to show that TpA,Bq � 0, for any object A in X � Xr1s � � � � � Xrt � 1s and any object B P XJt rts.
We have B � Crts, where C P XJt , i.e. TpX, Cr1sq � � � � � TpX, Crtsq � 0. On the other hand, since

A P X � Xr1s � � � � � Xrt � 1s, there are triangles Xiris ÝÑ Ai
αi�1ÝÑ Ai�1 ÝÑ Xiri� 1s, for i � 0, 1, � � � , t � 2,

where A0 � A and Xi P X, At�1 P X. Let f : A ÝÑ Crts be a map. Then the composition X0 ÝÑ A ÝÑ Crts
is zero and therefore f factors through α1 : A ÝÑ A1, say via a map f1 : A1 ÝÑ Crts: f � α1 � f1.
Similarly the composition X1r1s ÝÑ A1 ÝÑ Crts is zero, hance f1 factors through α2 : A1 ÝÑ A2, say via
a map f2 : A2 ÝÑ Crts: f1 � α2 � f2. Continuing in this way we deduce after t � 2 steps that the map
ft�3 : At�2 ÝÑ Crts admits a factorization ft�3 � αt�2�ft�2. Since the compositionXt�2rt�2s ÝÑ At�2 ÝÑ
Crts is zero, the map ft�2 factorizes through αt�1 : At�2 ÝÑ At�1, say via a map ft�1 : At�1 ÝÑ Crts:
ft�2 � αt�1 � ft�1. Since At�1 P Xrt � 1s, so At�1 � X�rt � 1s, with X� P X, the map ft�1 is zero since it
lies in TpAt�1, Crtsq � TpX�, Cr1sq � 0. Then f � α1 � f1 � � � � � α1 � α2 � � � � � αt�1 � ft�1 � 0. Hence p�q
is a torsion pair in T, and it remains to show that Hpγt

Aq is invertible, 1 ¤ t ¤ n � 1. This follows directly
from (i) and the construction of the cellular tower pCAq of A.

(iv) It follows from the triangle p:q that Ωt
XpAq P X implies that A P X�Xr1s�� � ��Xrts. Conversely assume

that A P X�Xr1s� � � ��Xrts. Then the right pX�Xr1s� � � ��Xrts)-approximation γt
A : CelltpAq ÝÑ A splits and

therefore ωt
A � ωt�1

A � ht
Arts � 0. Hence the map ht

Arts factorizes through the cone Cellt�1
A r1s of ωt�1

A , say via

a map f : Cellt�1pAqr1s ÝÑ Ωt�1
X pAqrt� 1s. We show that f � 0 or equivalently f r�1s � 0. Indeed there are

trianglesXiris ÝÑMi ÝÑMi�1 ÝÑ Xir1�1s, where theXi lie in X, M0 � Cellt�1pAq, Mi P Xris�� � �Xrt�1s,
and Mt�1 � Xt�1rt� 1s P X. Now Ωt�1

X pAq P XJt . Indeed this follows form (i) if t ¤ n� 1 and by applying

H to the triangle Ωn�1
X pAq ÝÑ Xn

A ÝÑ Ωn
XpAq ÝÑ Ωn�1

X pAqr1s and using that Ωn
XpAq P XJn , if t � n. It

follows that the composition X0 ÝÑ M0 ÝÑ Ωt�1
X pAqrts is zero, hence f r�1s : M0 ÝÑ Ωt�1

X pAqrts factorizes
through M0 ÝÑM1. Similarly since the composition X1r1s ÝÑM1 ÝÑ Ωt�1

X pAqrts is zero, the map M1 ÝÑ
Ωt�1

X pAqrts factorizes throughM1 ÝÑM2, hence f r�1s factorizes throughM0 ÝÑM2. Continuing in this way

we find that Mt�3 ÝÑ Ωt�1
X pAqrts factorizes through Mt�2. Finally since the map Xt�2rt�2s ÝÑ Ωt�1

X pAqrts
is zero, the map Mt�2rt � 2s ÝÑ Ωt�1

X pAqrts factorizes through Mt�1 � Xt�1rt � 1s ÝÑ Ωt�1
X pAqrts. This

last map being zero, it follows that so is the map f r�1s : M0 ÝÑ Ωt�1
X pAqrts. Hence f � 0 and therefore

ht
Arts � 0. Then from the triangles, Xt

Arts ÝÑ Ωt
XpAqrts ht

ArtsÝÑ Ωt�1
X pAqrt� 1s ÝÑ Xt

Art� 1s, cf. Remark
2.2, we deduce that Ωt

XpAqrts lies in Xrts as a direct summand of Xt
Arts. It follows that Ωt

XpAq P X. ¤

As a direct consequence of the Ghost Lemma (Proposition 3.2) and Proposition 4.2 we have the following.

Corollary 4.3. Let X be n-rigid. Then for any object A P T and 1 ¤ t ¤ n, the following are equivalent:

(i) Ωt
XpAq P X.

(ii) A P X � Xr1s � � � � � Xrts.
(iii) Gh

rt�1s
X pA,�q � 0.

Combining Proposition 4.2(ii) and Remark 2.2, we also have the following.

Corollary 4.4. Let X be a contravariantly finite n-rigid subcategory of T and A P T. Then the maps
γt
A : CelltpAq ÝÑ A and αt

A : Cellt�1pAq ÝÑ CelltpAq of the cellular tower of A induce isomorphisms:

HpAq �ÝÑ HpCell1pAqq �ÝÑ HpCell2pAqq �ÝÑ � � � �ÝÑ HpCellnpAqq
and exact sequences:

HpX1
Aq ÝÑ HpCell0pAqq ÝÑ HpCell1pAqq ÝÑ 0

0 ÝÑ HpCellnpAqq ÝÑ HpCelln�1pAqq ÝÑ HpXn�1
A rn� 1sq

The following gives a condition ensuring that the filtrations (3.2), (4.1) and (4.2) stabilize:
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Theorem 4.5. Let X be a contravariantly finite n-rigid subcategory of T. Then the following are equivalent:

(i) XJn � X.
(ii) Ωn

XpAq P X, @A P T.
(iii) Gh

rn�1s
X pTq � 0.

(iv) T � X � Xr1s � � � � � Xrns.
If one of the above equivalent conditions holds, then XJn�k � 0, @k ¥ 1.

Proof. Since by Proposition 4.2, Ωn
XpAqrns lies in XJn rns, condition (i) implies that Ωn

XpAq P X, @A P T. Hence
(i) ñ (ii), and by Corollary 4.3 we have (ii) ô (iii) ô (iv). We show that (iv) ñ (i). By Proposition 4.2
we know that, for any object A P T, the map ωn�1

A : A ÝÑ Ωn
XpAqrns is a left XJn -approximation of A and

Ωn
XpAqrns lies in Xrns since Ωn

XpAq P X by Corollary 4.3. Hence if A P XJn rns, the map ωn�1
A is split monic

and therefore A lies in Xrns as a direct summand of Ωn
XpAqrns. We infer that XJn rns � Xrns, or equivalently

XJn � X. Since X is n-rigid, we have X � XJn , hence XJn � X, i.e. (iv) ñ (i).
If one of the first four equivalent conditions holds, then let A P XJn�1 and B � Ar1s. Then TpX, Bq � 0

and clearly B P XJn . Since XJn � X, it follows that TpB,Bq � 0, i.e. B � Ar1s � 0 and therefore A � 0.
Hence XJn�1 � 0 and then trivially XJn�k � 0, @k ¥ 1. ¤

Under the equivalent conditions of Theorem 4.6, we now show that Ker H � XJ admits a nice description.

Corollary 4.6. Let X be a n-rigid subcategory of T, where n ¥ 1. If T � X � Xr1s � � � � � Xrns, then the full
subcategories XJ and JX are functorially finite in T. Moreover:

XJ � Xr1s � Xr2s � � � � � Xrns and JX � Xr�ns � Xr�n� 1s � � � � � Xr�1s
Proof. By Remark 2.2 we have Ωt

XpAq P X � Xr1s � � � � � Xrn � ts, 0 ¤ t ¤ n. Hence Ω1
XpAqr1s P pX � Xr1s �� � � � Xrn � 1sqr1s � Xr1s � � � � � Xrns. By Proposition 4.2(iii) we have Xr1s � � � � � Xrns � XJ. Consider the

triangle Ω1
XpAq ÝÑ X0

A ÝÑ A ÝÑ Ω1
XpAqr1s. If A ÝÑ B is a map, where B P Xr1s � � � � � Xrns, then the

composition X0
A ÝÑ A ÝÑ B is zero and therefore A ÝÑ B factorizes through h1

A : A ÝÑ Ω1
XpAqr1s. Hence

h1
A is a left pXr1s � � � � � Xrnsq-approximation of A. If A P XJ, then the map X0

A ÝÑ A is zero and therefore
A lies in Xr1s � � � � � Xrns as a direct summand of Ω1

XpAqr1s, i.e. XJ � Xr1s � � � � � Xrns. By Proposition 4.4,
X�� � ��Xrn�1s is contravariantly finite. This clearly implies that pX�� � ��Xrn�1sqr1s � Xr1s�� � ��Xrns � XJ
is also contravariantly finite. The proof for JX is dual and is left to the reader. ¤

We close this section with the following vanishing result, which, will be useful later and, gives conditions
ensuring that the sequence of cones

 
ωn
A : A ÝÑ Ωn

XpAqrns(n¥0
is eventually trivial.

Lemma 4.7. Let X be a contravariantly finite n-rigid subcategory of T. Then @A P X � Xr1s � � � � � Xrns:
TpΩt

XpAq,Xrn� t� 1sq � 0, 1 ¤ t ¤ n (4.3)

Moreover ωt
A � 0, @t ¥ n, and there is a decomposition: CelltpAq � A` Ωt�1

X pAqrts, @t ¥ n.

Proof. Since A P X � Xr1s � � � � � Xrns, by Corollary 4.3 we have Ωn
XpAq lies in X. Then the triangles

Ωt
XpAq ÝÑ Xt�1

A ÝÑ Ωt�1
X pAq ÝÑ Ωt

XpAqr1s, 1 ¤ t ¤ n pT t
Aq

show that Ωt
XpAq lies in X �Xr1s � � � � �Xrn� ts. Since by Proposition 4.2 we have a torsion pair

�
X �Xr1s �

� � � � Xrn � ts,XJn�t�1rn � t � 1s� in T and Xrn � t � 1s � XJn�t�1rn � t � 1s, because X � XJn�t�1, we get
directly p4.3q. On the other hand the right pX �Xr1s � � � � �Xrns)-approximation γn

A of A splits and therefore
ωn
A � 0. Then from the tower of triangles pCAq, we have ωt

A � 0, @t ¥ n. ¤

5. Homological Dimension

Let T be a triangulated category with split idempotents and X a contravariantly finite subcategory of T.
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5.1. The adjoint pair pΣX,ΩXq. Let A be in T and consider triangles

ΩXpAq g0
AÝÑ X0

A

f0
AÝÑ A

h0
AÝÑ ΩXpAqr1s and Ω̃XpAq g̃0

AÝÑ X̃0
A

f̃0
AÝÑ A

h̃0
AÝÑ Ω̃XpAqr1s

where the maps X0
A ÝÑ A ÐÝ X̃0

A are right X-approximations. Then there are maps β : X0
A ÝÑ X̃0

A and

β̃ : X̃0
A ÝÑ X0

A inducing morphisms of triangles:

ΩXpAq g0
A //

γ

²²

X0
A

f0
A //

β

²²

A

}
²²

h0
A// ΩXpAqr1s

γr1s
²²

Ω̃XpAq g̃0
A // X̃0

A

f̃0
A // A

h̃0
A// Ω̃XpAqr1s

Ω̃XpAq g̃0
A //

γ̃

²²

X̃0
A

f̃0
A //

β̃

²²

A

}
²²

h̃0
A// Ω̃XpAqr1s

γ̃r1s
²²

ΩXpAq g0
A // X0

A

f0
A // A

h0
A// ΩXpAqr1s

Since h0
Ar�1s � γ � γ̃ � h0

Ar�1s and h̃0
A � γ̃ � γ � h̃0

Ar�1s, there are maps κ : X0
A ÝÑ ΩXpAq and λ : X̃0

A ÝÑ
Ω̃XpAq such that: 1ΩXpAq�γ�γ̃ � g0A�κ and 1Ω̃XpAq�γ̃�γ � g̃0A�λ. This means that the map γ is invertible in

T{X and γ�1 � γ̃. We infer that the object ΩXpAq is uniquely determined by A up to an isomorphism in the
stable category T{X and does not depends on the choice of the right X-approximations. Now if α : A ÝÑ B
is a map in T, then α induces a morphism of triangles indicated in the left of the following display

ΩXpAq g0
A //

γ

²²

X0
A

f0
A //

β

²²

A

α

²²

h0
A// ΩXpAqr1s

γr1s
²²

ΩXpBq g0
B // X0

B

f0
B // B

h0
B// ΩXpBqr1s

ΩXpAq g0
A //

γ1
²²

X0
A

f0
A //

β1
²²

A

α

²²

h0
A// ΩXpAqr1s

γr1s
²²

ΩXpBq g0
B // X0

B

f0
B // B

h0
B// ΩXpBqr1s

The maps β and γ are not uniquely determined, so if there are maps β1 and γ1 making the diagram on the right
of the above display a morphism of triangles, then clearly γ � γ1 � g0A � ρ for some map ρ : X0

A ÝÑ ΩXpBq.
Then γ � γ1 in the stable category T{X and this unique map is denoted by ΩXpαq. It is then easy to see that
the assignments A ÞÝÑ ΩXpAq and α ÞÝÑ ΩXpαq define an additive functor ΩX : T{X ÝÑ T{X. Dually if X is
covariantly finite, then by performing the dual constructions we obtain an additive functor ΣX : T{X ÝÑ T{X.
Lemma 5.1. If X is a functorially finite subcategory of T, then we have an adjoint pair

pΣX,ΩXq : T{X ÝÑ T{X
and the unit δ : IdT{X ÝÑ ΩXΣX and the counit ε : ΣXΩX ÝÑ IdT{X induce isomorphisms:

ΩXpεq : ΩXΣXΩX
�ÝÑ ΩX and ΣXpδq : ΣX

�ÝÑ ΣXΩXΣX

Proof. Using functorial finiteness of X we may construct triangles

ΩXpAq
f
ΩXpAq
0 //

}
²²

X
ΩXpAq
0

g
ΩXpAq
0 //

ρ

²²

ΣXΩXpAq
εA

²²

h
ΩXpAq
0 // ΩXpAqr1s

}
²²

ΩXpAq
g0A // X0

A

f0
A // A

h0
A // ΩXpAqr1s

A
gA0 //

δA

²²

XA
0

fA
0 //

σ

²²

ΣXpAq

}
²²

hA
0 // Ar1s

δAr1s
²²

ΩXΣXpAq
g0
ΣXpAq // X0

ΣXpAq
f0
ΣXpAq // ΣXpAq

h0
ΣXpAq// ΩXΣXpAqr1s

We leave to the reader to check that the induced maps εA : ΣXΩXpAq ÝÑ A and δA : A ÝÑ ΩXΣXpAq
are natural and define the counit and the unit of an adjoint pair pΣX,ΩXq in T{X. Since by construction
TpX, h0

ΩXpAqq � TpX, εAq � TpX, h0
Aq � 0 and Tph0

ΣXpAqr�1s,Xq � TpδA,Xq � TphA
0 r�1sq � 0, it follows that

the map g
ΩXpAq
0 : X

ΩXpAq
0 ÝÑ ΣXΩXpAq is a right X-approximation of ΣXΩXpAq and the map g0ΣXpAq :

ΩXΣXpAq ÝÑ X0
ΣXpAq is a left X-approximation of ΩXΣXpAq. As a consequence by the above triangles we

infer that the maps ΩXpεAq : ΩXΣXΩXpAq ÝÑ ΩXpAq and ΣXpδAq : ΣXpAq ÝÑ ΣXΩXΩXpAq are invertible.

Hence we have natural isomorphisms: ΩXpεq : ΩXΣXΩX
�ÝÑ ΩX and ΣXpδq : ΣX

�ÝÑ ΣXΩXΣX. ¤
5.2. Homological Dimension. If A P T, we define the X-projective dimension pdX A of A to be the
smallest n ¥ 0 such that Ωn

XpAq � 0 in T{X or equivalently Ωn
XpAq P X. If Ωn

XpAq R X, @n ¥ 0, then we set
pdX A � 8. The X-global dimension of T is defined by gl. dimX T � suptpdX A |A P Tu. Note that the
discussion in 5.1 shows that the invariants pdX A and gl. dimX T are well-defined. Dually if X is covariantly
finite, the X-injective dimension idX A is defined, and in case X is functorially finite in T, then the existence
of the adjoint pair pΣn

X,Ω
n
Xq in T{X, @n ¥ 0, shows that gl. dimX T � suptpdX A |A P Tu � suptidX A |A P Tu.

Lemma 5.2. Let A be in T. Then we have the following.
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(i) If pdX A � m   8, then A P X � Xr1s � � � �Xrms.
(ii) If X is n-rigid, then for any m ¤ n we have: pdX A ¤ m if and only if A P X � Xr1s � � � �Xrms.
(iii) If X is n-rigid, and pdX A � m   n, then A P XJn�m, i.e. TpX, Arisq � 0, 1 ¤ i ¤ n�m.

Proof. Part (i) follows from Proposition 3.2 and part (ii) follows from Proposition 4.2.
(iii) Since pdX A � m, it follows that A P X �Xr1s � � � � �Xrms. Then there exists a triangle X0 ÝÑ A ÝÑ

B ÝÑ X0r1s, where X0 P X and B P Xr1s � Xr2s � � � � � Xrms. It follows that Bris P Xri� 1s � � � � � Xrm� is
and this implies that for 1 ¤ i ¤ n�m we have TpX, Brisq � 0 since X is n-rigid and m   n. Then applying
TpX,�q to the above triangle we see directly that TpX, Arisq � 0, 1 ¤ i ¤ n�m. ¤

By Corollary 5.2 we have that if X is n-rigid, then gl. dimX T ¤ m if and only if Ωm
X pAq P X, @A P T if and

only if Gh
rm�1s
X pA,�q � 0, @A P T, if and only if T � X � Xr1s � � � � � Xrms.

Corollary 5.3. Let T be a non-trivial triangulated category and X a contravariantly finite n-rigid subcategory
of T, where n ¥ 1. Then gl. dimX T ¥ n, and gl. dimX T � n if and only if T � X � Xr1s � � � � � Xrns.
Proof. We may assume that gl. dimX T � m   8, and let m   n. Then we have that Ωm

X pAq P X, @A P T

and therefore T � X � Xr1s � � � � � Xrms. Since m   n, X is m-rigid and then by Theorem 4.7 we have that
XJm�1 � 0. Since pdX Arts ¤ m, @t ¥ 0, it follows by Lemma 5.2 that Arts P XJn�m. This clearly implies that

A P XJm�1 and therefore A � 0. This contradiction shows that gl. dimX T ¥ n. Moreover by Lemma 5.2 we
have gl. dimX T � n if and only if T � X � Xr1s � � � � � Xrns. ¤

We use the above results to construct certain exact sequences in mod-X which will be useful later on.

Theorem 5.4. Let 1 ¤ t ¤ n and X be a contravariantly finite subcategory of T such that

TpX,Xrisq � 0, @i P r�t� 1, tszt0u p�q
(i) For any A P XJt�1rts X XJ1 there is a short exact sequence

0 ÝÑ HpAq ÝÑ HpE0q ÝÑ HpE1q ÝÑ 0

where E0, E1 P XJt rt� 1s.
(ii) For any A P �X � Xr1s � � � � � Xrts�X XJt rt� 1s, there is an exact sequence

0 ÝÑ HpXtq ÝÑ HpXn�1q ÝÑ � � � � � � ÝÑ HpX1q ÝÑ HpX0q ÝÑ HpAq ÝÑ 0

where the Xi, Xj lie in X and pdHpAq ¤ t.

The split the proof into two steps.

Proposition 5.5. Let n ¥ 1 and X be a contravariantly finite n-rigid subcategory of T. Then for any object
A P XJt�1rts, 1 ¤ t ¤ n, there exists a triangle

A ÝÑ E0 ÝÑ E1 ÝÑ Ar1s
where E0, E1 P XJt rt � 1s and the sequence 0 ÝÑ HpAq ÝÑ HpE0q ÝÑ HpE1q is exact. In particular if, in
addition, A P XJ1 , then there exists an exact sequence

0 ÝÑ HpAq ÝÑ HpE0q ÝÑ HpE1q ÝÑ 0

Proof. Case n � 1: Then condition p�q reduces to TpX,Xr1sq � 0, i.e. X � XJ1 . Since, by Proposition 4.2,
we have TpX,Ω1

XpAqr1sq � 0, it follows that Ω1
XpAq P XJ1 , @A P T. For any X P X, consider the triangle

Ω1
XpXr�1sqr1s ÝÑ Cell0pXr�1sqr1s ÝÑ X ÝÑ Ω1

XpXr�1sqr2s (5.1)

where Cell0pXr�1sq � X0
Xr�1s P X � XJ1 . Applying H and using that X � XJ1 , we have an exact sequence

0 ÝÑ HpXq ÝÑ HpΩ1
XpXr�1sqr2sq ÝÑ HpCell0pXr�1sqr2sq ÝÑ 0

Then the assertion follows by setting E0 � Ω1
XpXr�1sq and E1 � Cell0pXr�1sq.

Case n ¥ 2: Let A P XJt�1rts, i.e. TpX, Ar�1sq � TpX, Ar�2sq � � � � � TpX, Ar�t� 1sq � 0. Consider the
triangle arising from the tower CellAr�1s:

Ωt
XpAr�1sqrt� 1s ÝÑ Cellt�1pAr�1sq ÝÑ Ar�1s ÝÑ Ωt

XpAr�1sqrts
Setting Ωt

XpAr�1sq :� B and C � Cellt�1pAr�1sqr1sq, we have a triangle

Brts ÝÑ C ÝÑ A ÝÑ Brt� 1s
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and, by Proposition 4.2, we know that B P XJt and C P Xr1s � Xr1s � � � � � Xrts. Applying H to this triangle
and using that HpCq � 0, we have an exact sequence

0 ÝÑ HpAq ÝÑ HpBrt� 1sq ÝÑ HpCr1sq
where by construction we have Brt� 1s P XJt rt� 1s. Now applying the functor H to the triangles

Br1s ÝÑ Cr�t� 1s ÝÑ Ar�t� 1s ÝÑ Br2s
Br2s ÝÑ Cr�t� 2s ÝÑ Ar�t� 2s ÝÑ Br3s

� � � � � � � � � � � � � � � � � � � � �
Brts ÝÑ C ÝÑ A ÝÑ Brt� 1s

and using that TpX, Ar�isq � 0, 1 ¤ i ¤ t� 1, and TpX, Brjsq � 0, 1 ¤ j ¤ t, we have:

TpX, Cr�t� 1sq � TpX, Cr�t� 2sq � TpX, Cr�t� 3sq � � � � � TpX, tr�1sq � TpX, Cq � 0

This means that Cr�ts P XJt , and therefore Cr1s P XJt rt � 1s. Now the assertion follows by setting E0 �
Ωt

XpAr�1sq � B and E1 � Cellt�1pAr�1sqr2s � Ar1s. ¤

Proposition 5.6. Let X be a contravariantly finite n-rigid subcategory of T, n ¥ 1. Assume that X � XJt�1rts,
if 2 ¤ t ¤ n. If A lies in pX � Xr1s � � � � � Xrtsq X XJt rt� 1s, then Ωt

XpAq P X and pdHpAq ¤ t.

Proof. If t � 1, then since A P X � Xr1s, there exists a triangle X0 ÝÑ A ÝÑ X1r1s ÝÑ X0r1s, where
the Xi lie in X. Applying H and using that TpX, Ar�1sq � 0 � TpX,Xr1sq, it follows that the sequence
0 ÝÑ HpX1q ÝÑ HpX0q ÝÑ HpAq ÝÑ 0 is exact. This means that pdHpAq ¤ 1 and the map X ÝÑ A is a
right X-approximation of A, so its cocone X1 P X can be chosen as Ω1

XpAq. If 2 ¤ t ¤ n, then Corollary 3.12

shows that Ωt
XpAq P T and Extt�1pHpAq,HpBq � 0, @B P T. Hence pdHpAq ¤ t. ¤

6. Cluster-Tilting Subcategories

Let as before T be a triangulated category and X a full subcategory of T which is closed under direct
summands and isomorphisms. The results of section 5 show that if X is contravariantly finite and satisfies X �
XJn , then X enjoys special properties. In this section we give several characterizations of such subcategories.

First we observe the following symmetry.

Proposition 6.1. Let X be a full subcategory of T, and n ¥ 1. Then the following are equivalent:

(i) X is contravariantly finite and X � XJn .
(ii) X is contravariantly finite and both X and XJn are n-rigid.
(iii) X is covariantly finite and X � J

nX.
(iv) X is covariantly finite and both X and JnX are n-rigid.

Proof. (i) ñ (ii) and (iii) ñ (iv) The proof trivial.
(ii) ñ (i) ð (iv) Assume that (ii) holds. Since X is n-rigid, we have X � XJn . Let A be an object of T

and consider the associated tower of triangles pCAq. By Proposition 4.2, the map ωn�1
A : A ÝÑ Ωn

XpAqrns is
a left XJn rns-approximation of A. If A lies in XJn , then since the latter is n-rigid it follows that ωn�1

A � 0 and

therefore ωn�2
A factorizes through the left cone Xn�1

A rn�1s of hn�1
A rn�1s. Since both A and Xn�1

A lie in XJn
and the latter is n-rigid, it follows that TpA,Xn�1

A rn � 1sq � 0 and this implies that ωn�2
A � 0. Continuing

in this way after n � 1 steps we deduce that ω1
A � 0 and therefore the map ω0

A factorizes through the left
cone X1

Ar1s of h1
Ar1s. Since both A and X1

A lie in XJn and the latter is n-rigid, we have TpA,X1
Ar1sq � 0 and

this implies that h0
A � ω0

A � 0. Then A lies in X as a direct summand of X0
A. Hence XJn � X and therefore

X � XJn . The proof that (iv) ñ (i) is dual to the proof of the implication (ii) ñ (i) using cocellular towers,
cf. 2.2, and is left to the reader.

(i) ñ (iii) Let X � XJn . By Proposition 4.2 we know that XJn rns is covariantly finite. Let A be in T and
let ωn�1

Arns : Arns ÝÑ Ωn
XpArnsqrns be a left XJn rns-approximation of A. Then clearly the map ωn�1

Arnsr�ns :
A ÝÑ Ωn

XpArnsq is a left XJn -approximation of A, so XJn is covariantly finite. Since XJn � X, the last map is
a left X-approximation of A and therefore X is covariantly finite in T. Since X is n-rigid, we have X � J

nX.
Let A be in J

nX. Consider the map ωn�1
A : A ÝÑ Ωn

XpAqrns. Then Ωn
XpAqrns P Xrns and therefore ωn�1

A � 0

since A P JnX. Hence ωn�2
A �hn�1

A rn� 1s � 0 and therefore ωn�1
A factors through the left cone Xn�1

A rn� 1s of
hn�1
A rn� 1s, say via a map A ÝÑ Xn�1

A rn� 1s. Since A P JnX, the last map is zero and therefore ωn�2
A � 0.

Continuing in this we deduce after n� 1 steps that ω1
A � 0 and therefore ω0

A �h1
Ar1s � 0. Then ω0

A factorizes
through the left cone X1

Ar1s of h1
Ar1s. However TpA,X1

Ar1sq � 0, since A P JnX. This implies that h0
A � ω0

A

and therefore A lies in X as a direct summand X0
A. Hence JnX � X and therefore X � J

nX. ¤
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Definition 6.2. [21, 16] A full subcategory X of T is called a pn� 1q-cluster tilting, n ¥ 1, if:

(i) X is functorially finite.
(ii) X � tA P T |TpX, Arisq � 0, 1 ¤ i ¤ nu, i.e. X � XJn .
(iii) X � tA P T |TpA,Xrisq � 0, 1 ¤ i ¤ nu, i.e. X � J

nX.

Now we can prove the main result of this section which, among other things, gives several convenient
characterizations of pn� 1q-cluster subcategories.
Theorem 6.3. Let X be a full subcategory of T, and n ¥ 1. Then the following are equivalent.

(i) X is a pn� 1q-cluster tilting subcategory of T.
(ii) X is contravariantly finite and X � XJn .
(iii) X is covariantly finite and X � J

nX.
(iv) X is contravariantly finite and both X and XJn are n-rigid.
(v) X covariantly finite and both X and JnX are n-rigid.
(vi) X is contravariantly (or covariantly) finite n-rigid and: gl. dimX T � n.
(vii) X is contravariantly (or covariantly) finite n-rigid and: T � X � Xr1s � � � � � Xrns.
(viii) X is contravariantly (or covariantly) finite n-rigid and: Ghrn�1spTq � 0.
(ix) X is contravariantly (or covariantly) finite n-rigid and, @A P T: Ωn

XpAq P X.
(x) X is covariantly (or contravariantly) finite n-rigid and, @A P T: Σn

XpAq P X.
(xi) X is contravariantly finite n-rigid, any object of XJn rn � 1s is injective in mod-X and the functor

H : XJn rn� 1s ÝÑ mod-X is full and reflects isomorphisms.

If X is a pn� 1q-cluster subcategory of T, then the abelian category mod-X has enough projectives and enough
injectives, the functors Xrn� 1s ÝÑ mod-XÐÝ X are fully faithful and induce equivalences

Xrn� 1s �ÝÑ Injmod-X and X
�ÝÑ Projmod-X

By Proposition 6.1 and the results of sections 4 and 5, the first ten conditions are equivalent. So to
complete the proof, it remains to show that (xi) is equivalent to (i). This requires several steps.

Lemma 6.4. Let X be a contravariantly finite n-rigid subcategory of T. If A P X�Xr1s� � � ��Xrks, 0 ¤ k ¤ n,
and B P T is such that TpX, Br�isq � 0, 1 ¤ i ¤ k � 1, then :

GhX
�
Ω1

XpAq, B� � 0

and the map HA,B : TpA,Bq ÝÑ Hom
�
HpAq,HpBq�, f ÞÝÑ Hpfq, is surjective.

Proof. Since A P X � Xr1s � � � � � Xrks, k ¤ n, it follows easily that Ωk
XpAq P X and then by induction we

infer that Ω1
XpAq P X � Xr1s � � � � � Xrk � 1s. Hence there is a triangle X ÝÑ Ω1

XpAq ÝÑ C ÝÑ Xr1s, where
X P X and C P Xr1s � � � � � Xrk � 1s. Let α : Ω1

XpAq ÝÑ B be an X-ghost map. Then the composition
X ÝÑ Ω1

XpAq ÝÑ B is zero, hence Ω1
XpAq ÝÑ B factorizes through Ω1

XpAq ÝÑ C. Since any map from an
object from Xr1s�� � ��Xrk�1s to an object B satisfying TpX, Br�isq � 0, 1 ¤ i ¤ k�1, is clearly zero, it follows
that TpC,Bq � 0. This implies that the map Ω1

XpAq ÝÑ B is zero and consequently GhX
�
Ω1

XpAq, B� � 0. ¤
Corollary 6.5. Let X be an pn� 1q-cluster tilting subcategory of T. Let B P T be such that TpX, Br�isq � 0,
1 ¤ i ¤ n� 1. Then for any object A P T, there exists a short exact sequence

0 ÝÑ Gh
rns
X pA,Bq ÝÑ TpA,Bq ÝÑ HomrHpAq,HpBqs ÝÑ 0

If, in addition, TpX, Br�nsq � 0, then the map HA,B is invertible.

Proof. By Lemma 6.4, with k � n, we have GhX
�
Ω1

XpAq, B� � 0, hence by Proposition 3.6 the map HA,B is

surjective. We show that GhXpA,Bq � Ker HA,B � Gh
rns
X pA,Bq. Let α : A ÝÑ B be such that Hpαq � 0,

i.e. α is X-ghost. Then α factorizes through h1
A : A ÝÑ Ω1

XpAqr1s, say via a map β : Ω1
XpAqr1s ÝÑ B.

Since Ω1
XpAqr1s P Xr1s � Xr2s � � � � � Xrns, there are triangles Xiris liÝÑ Ni

ξiÝÑ Ni�1 ÝÑ Xiri � 1s, for
1 ¤ i ¤ n�1, where N1 � Ω1

XpAqr1s, X1 P X and Mi�1 P Xri�1s�� � ��Xrns; in particular Mn � Xnrns, where
Xn P X. Since TpX, Br�1sq � 0, we have l1 � β � 0, and therefore β � ξ1 � β2 for some map β2 : N2 ÝÑ B.
Using that TpX, Br�isq � 0, 1 ¤ i ¤ n� 1, by induction there exists a factorization β � ξ1 � ξ2 � � � � ξn�1 �βn,
where βn : Xnrns ÝÑ B. Since Mi P Xris � � � �Xrns and since clearly any map from an object of Xris to
an object in Xri � 1s � � � �Xrns is zero, the map ξi : Mi ÝÑ Mi�1 is Xris-ghost. In particular the map
ξn�1 �βn : Mn�1 ÝÑ B is Xrn� 1s-ghost. Since α � h1

A �β � h1
A � ξ1 � ξ2 � � � � ξn�1 �βn, it follows that α lies

in Gh
rns
X pA,Bq, hence Ker HA,B � Gh

rns
X pA,Bq. Since clearly Gh

rns
X pA,Bq � GhXpA,Bq, the assertion follows.

If in addition TpX, Br�nsq � 0, then the map βn is zero. So α � 0 and then Gh
rns
X pA,Bq � 0. ¤
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Since any object B P Xrn� 1s satisfies the assumptions of the above Corollary we have the following.

Corollary 6.6. For any object A P T and any object X P X, we have an isomorphism

HA,Xrn�1s : TpA,Xrn� 1sq �ÝÑ Hom
�
HpAq,HpXrn� 1sq�

In particular the functor H : Xrn� 1s ÝÑ mod-X is fully faithful.

The following result gives the implication (i) ñ (ix) in Theorem 6.3.

Proposition 6.7. Let X be an pn � 1q-cluster tilting subcategory of T. Then mod-X has enough injectives,
and the functor H : T ÝÑ mod-X induces an equivalence

H : Xrn� 1s �ÝÑ Injmod-X

Proof. Recall that by Lemma 2.4 the functor H : T ÝÑ mod-X is almost full, i.e. setting A� � Cell1pAq, for
any object A P T, we have a canonical map γ1

A : A� ÝÑ A such that Hpγ1
Aq is invertible and, for any map

µ̃ : HpAq ÝÑ HpBq, there there exists a commutative diagram

HpA�q HpµqÝÝÝÝÑ HpB�q
Hpγ1

Aq
���� �

���Hpγ1
Bq

HpAq µ̃ÝÝÝÝÑ HpBq
Let µ̃ : HpAq ÝÑ HpBq be a monomorphism in mod-X and let α̃ : HpAq ÝÑ HpXrn � 1sq be a map, where
X P X. Clearly the map Hpµq is a monomorphism, so if C ÝÑ A� ÝÑ B� ÝÑ Cr1s is a triangle in T, then
the map C ÝÑ A� is X-ghost and therefore it factorizes through XJ � Xr1s � � � � � Xrns. By Corollary 6.6,
there is a map α : A ÝÑ Xrn � 1s such that Hpαq � α̃. Since any map from an object of Xr1s � � � � � Xrns
to an object of Xrn � 1s is clearly zero, it follows that the composition C ÝÑ A� ÝÑ A ÝÑ Xrn � 1s is
zero and therefore γ1

A � α factorizes through µ, i.e. γ1
A � α � µ � ρ for some map ρ : B� ÝÑ Xrn � 1s.

Then we have Hpγ1
Aq � Hpαq � Hpµq � Hpρq and therefore Hpγ1

Aq � Hpαq � Hpγ1
Aq � µ̃ � Hpγ1

Bq�1 � Hpρq, hence
Hpαq � µ̃ � Hpγ1

Bq�1 � Hpρq. This shows that HpXrn� 1sq is injective, @X P X.
We show that any object HpAq of mod-X is a subobject of an object from HpXrn � 1sq. There is a map

ωn�1
Ar�1s : A ÝÑ Ωn

XpAr�1sqrn� 1s and a triangle

Ωn
XpAr�1sq ÝÑ Celln�1pAr�1sqr1s ÝÑ A ÝÑ Ωn

XpAr�1sqrn� 1s
where by construction Celln�1pAr�1sqr1s lies in Xr1s�� � ��Xrns. Since Ωn

XpAr�1sq P X, we have Ωn
XpAr�1sqrn�

1s P Xrn � 1s. Hence HpΩn
XpAr�1sqrn � 1sq is injective in mod-X, and the map Hpωn�1

Ar�1sq : HpAq ÝÑ
HpΩn

XpAr�1sqrn� 1sq is a monomorphism, since HpXr1s � � � � �Xrnsq � 0. hence mod-X has enough injectives.
Now let HpAq be an injective object of mod-X. By the above there exists a split monomorphism Hpµq :

HpAq ÝÑ HpXrn � 1sq, where X P X. Hence there exists a map α̃ : HpXrn � 1sq ÝÑ HpAq such that
Hpµq � α̃ � 1HpAq. Now the map α̃ �Hpµq is an idempotent endomorphism of HpXrn� 1sq and therefore since
the functor H : Xrn�1s ÝÑ mod-X is fully faithful, there exists an idempotent endomorphism e : Xrn�1s ÝÑ
Xrn� 1s such that Hpeq � α̃ � Hpµq. Since idempotents split in T, there exist maps κ : Xrn� 1s ÝÑ D and
λ : D ÝÑ Xrn�1s such that e � κ�λ and λ�κ � 1Xrn�1s. Clearly D is of the form X 1rn�1s, for some object
X 1 P X, as a direct summand of Xrn�1s. We claim that the map φ :� Hpµq�Hpκq : HpAq ÝÑ HpX 1rn�1sq
is an isomorphism with inverse the map ψ :� Hpλq � α̃. Indeed we have:

φ � ψ � Hpµq � Hpκq � Hpλq � α̃ � Hpµq � Hpκ � λq � α̃ � Hpµq � Hpeq � α̃ � Hpµq � α̃ � Hpµq � α̃ � 1HpAq
ψ � φ � Hpλq � α̃ � Hpµq � Hpκq � Hpλq � Hpeq � Hpκq � Hpλq � Hpκq � Hpλq � Hpκq � 1HpX1rn�1sq

Hence the functor H : Xrn� 1s ÝÑ Injmod-X is surjective on objects and therefore an equivalence. ¤

Finally the next result shows the implication (ix) ñ (i) and completes the proof of Theorem 6.3.

Proposition 6.8. Let X be a contravariantly finite n-rigid subcategory of T. If the functor H : XJn rn�1s ÝÑ
mod-X has image in Injmod-X, is full and reflects isomorphisms, then X is pn� 1q-cluster tilting.

Proof. It suffices to show that XJn � X. Let A P XJn and consider the triangle Ω1
XpAq g0

AÝÑ X0
A ÝÑ

A ÝÑ Ω1
XpAqr1s. Applying H and using that X is n-rigid and TpX, Arisq � 0, 1 ¤ i ¤ n, it follows that

TpX,Ω1
XpAqrisq � 0, 1 ¤ i ¤ n, so Ω1

XpAq P XJn , and we have a monomorphism Hpg0Arn� 1sq : HpΩ1
XpAqrn�

1sq ÝÑ HpX0
Arn�1sq. On the other hand since X � XJn it follows thatX0

Arn�1s P XJn rn�1s. Since the objects
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HpΩ1
XpAqrn�1sq and HpX0

Arn�1sq are injective in mod-X, the above monomorphism splits. Since by hypothe-
sis H|XJn rn�1s is full and reflects isomorphisms, this implies that the map g0Arn�1s : Ω1

XpAqrn�1s ÝÑ X0
Arn�1s,

or equivalently the map Ω1
XpAqr1s ÝÑ X0

Ar1s, is split monic. Then the map A ÝÑ Ω1
XpAqr1s is zero and

therefore A lies in X as a direct summand of X0
A P X. Hence XJn � X. ¤

From now on let X be a pn� 1q-cluster tilting subcategory of T, where n ¥ 1.

Corollary 6.9. The abelian category mod-X is Frobenius if and only if X � Xrn� 1s.
Corollary 6.10. There exists a torsion triple:�

Xrk � ns � � � � � Xrk � 2s � Xrk � 1s, Xrks, Xrk � 1s � Xrk � 2s � � � � � Xrk � ns�, @k P Z
Proof. Since XJn � X, by Proposition 4.2 there is a torsion pair

�
X � Xr1s � � � � � Xrn � 1s,Xrns� in T.

Clearly then
�
Xrk � ns � � � � � Xrk � 2s � Xrk � 1s, Xrks� is a torsion pair in T, @k P Z. The proof that�

Xrks, Xrk � 1s �Xrk � 2s � � � � �Xrk � ns� is a torsion pair in T is dual, using cellular cotowers, see 2.2. ¤

We denote by K0pX,`q the split Grothendieck group of the exact category X endowed with the split exact
structure and by K0pTq the Grothendieck group of T. If n � 1, so that X is a 2-cluster tilting subcategory,
and if T is algebraic, then Palu [25] proved that K0pTq is a quotient of K0pX,`q by a certain subgroup. In
our case we have the following for n ¥ 2 and for arbitrary T.

Corollary 6.11. The inclusion X ÝÑ T induces an epimorphism: K0pX,`q ÝÑ K0pTq ÝÑ 0.

Proof. Clearly the inclusion i : X ÝÑ T induces an homomorphism K0piq : K0pX,`q ÝÑ K0pTq, by K0piqrXs �rXs. Let A be in T and consider the triangle Ω1
XpAq ÝÑ X0

A ÝÑ A ÝÑ Ω1
XpAqr1s. Then in KpTq we have

a relation rAs � rX0
As � rΩ1

XpAqs. Similarly the triangle Ω2
XpAq ÝÑ X1

A ÝÑ Ω1
XpAq ÝÑ Ω2

XpAqr1s gives the
relation rΩ1

XpAqs � rX1
As � rΩ2

XpAqs and therefore we have rAs � rX0
As � rX1

As � rΩ2
XpAqs. Continuing in this

way we have a relation in K0pTq: rAs � °n�1
i�0 p�1qirXi

As�p�1qnrΩn
XpAqs. By Theorem 5.3 we have Ωn

XpAq :�
Xn

A P X, hence rAs � °n
i�0p�1qirXi

As. Hence rAs � °n
i�0p�1qiK0piq�rXi

As� � K0piq�°n
i�0p�1qirXi

As�, i.e. for
any object A in T, the generator rAs lies in the image of K0piq, This clearly implies that K0piq is surjective. ¤

7. Certain Cluster Tilting Subcategories are Gorenstein

Our aim in this section is to show that a special class of pn�1q-cluster tilting subcategories, called pn�kq-
strong pn � 1q-cluster tilting subcategories, of an arbitrary triangulated category, where n ¥ 2k � 1, enjoys
the property that the associated cluster tilted category mod-X is k-Gorenstein.

Main examples include all 2-cluster tilting subcategories and all pn� 1q-cluster categories of associated to
a finite-dimensional hereditary algebra over a field.

7.1. Gorenstein Categories. Let A be an abelian category with enough projectives and enough injectives.
We recall from [12] the following invariants attached to A :

silpA � suptidP |P P ProjA u, spliA � suptpd I | I P InjA u
G-dimA :� max

 
silpA , spliA

(
We call G-dimA the Gorenstein dimension of A and then A is called Gorenstein if G-dimA   8. If
G-dimA ¤ n   8, then we say that A is n-Gorenstein.

Lemma 7.1. Let A be an abelian category with enough projectives and enough injectives. Assume that
spliA   8 and silpA   8. Then A is Gorenstein of dimension G-dimA � spliA � silpA .

Proof. Let spliA � n   8 and silpA � m   8. If m � 0, then any projective object of A is injective,
and since any injective has finite projective dimension, bounded by n, it follows that any injective object is
projective, i.e. n � 0. Dually if n � 0 we have m � 0. In both cases A is Frobenius, i.e. A is Gorenstein
of dimension G-dimA � 0. Now let n ¡ m ¡ 0, so n ¥ 2. Since spliA � n there exists an injective object
I such that Ωn�1I is not projective, so Ext1A pΩn�1I,�q � 0. Hence there exists an object A P A such that
ExtnA pI,Aq � Ext1A pΩn�1I, Aq � 0. Let 0 ÝÑ ΩpAq ÝÑ P ÝÑ A ÝÑ 0 be exact where P is projective.
Evaluating the exact sequence of functors � � � ÝÑ Ext1A p�, P q ÝÑ Ext1A p�, Aq ÝÑ Ext2A p�,ΩAq ÝÑ � � �
at Ωn�1I and using that Ext2A pΩn�1I,ΩAq � Extn�1

A pI,ΩAq � 0 since pd I ¤ n, we get an epimorphism

Ext1A pΩn�1I, P q ÝÑ Ext1A pΩn�1I,Aq ÝÑ 0. Hence ExtnA pI, P q � Ext1A pΩn�1I, P q � 0. This shows that
m ¥ idP ¡ n and this is not the case. Dually if m ¡ n, then we arrive at a contradiction. This shows that
n � m and therefore A is Gorenstein of Gorenstein dimension G-dimA � spliA � silpA . ¤
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7.2. Strong Cluster Tilting Subcategories. Let as before T be a triangulated category with split idem-
potents and X a full subcategory of T closed under direct summands and isomorphisms.

Then we have a chain of extension closed full subcategories of T:

� � � � XJn�1rns � XJn�2rn� 1s � XJ2 r3s � XJ1 r2s � XJ0 r1s � Xr2s � Xr3s � � � � � Xrn� 1s p�q
where, as easily seen: XJt rt� 1s �  

A P T | TpX, Ar�ksq � 0, 1 ¤ k ¤ t
(
.

Clearly if X is pn� 1q-cluster tilting, then: XJn�1rn� 2s � 0 and Xrn� 1s � XJn rn� 1s.
Definition 7.2. A full subcategory X of T is called t-strong, where t ¥ 1, if:

X � XJt rt� 1s, i.e. TpX,Xr�1sq � � � � � TpX,Xr�tsq � 0

The following gives a convenient characterization of when a cluster tilting subcategory is t-strong.

Proposition 7.3. If X is pn� 1q-cluster tilting, then for 1 ¤ t ¤ n, the following are equivalent:

(i) X is t-strong.
(ii) Xrn� 1s � X � Xr1s � � � �Xrn� ts.

Proof. (i) ñ (ii) We know that T � X �Xr1s � � � � �Xrns and therefore Xrn� 1s � X �Xr1s � � � � �Xrns. Hence
for any object X P X, there exists a triangle A ÝÑ Xrn�1s ÝÑ B ÝÑ Ar1s, where A P X�Xr1s�� � ��Xrn�ts
and B P Xrn� t� 1s � � � � �Xrns. Now the hypothesis (ii) implies that any map from an object from X to an
object from Xr�ts � � � � � Xr�1s is zero and this trivially implies that any map from an object from Xrn� 1s
to an object from Xrn � t � 1s � � � � � Xrns is zero. It follows that the map Xrn � 1s ÝÑ B is zero, hence
Xrn� 1s lies in X � Xr1s � � � � � Xrn� ts as a direct summand of A.

(ii)ñ (i) The hypothesis implies that X � Xr�n�1s�Xr�ns� � � ��Xr�t�1s. Hence for any object X P X,
there exists a triangle A ÝÑ X ÝÑ B ÝÑ Ar1s, where A P Xr�n � 1s � � � � � Xr�t � 1s. Let 1 ¤ k ¤ t and
consider any map X ÝÑ X 1r�ks, where X 1 P X. The composition A ÝÑ X ÝÑ X 1r�ks is zero since it lies
in TpX,Xrn � 1 � ks. Hence the map X ÝÑ X 1r�ks factorizes through the map X ÝÑ B. However using
that 1 ¤ k ¤ t, it follows easily that any map from an object from Xr�ns � � � � �Xr�t� 1s to an object from
Xr�ks is zero. Hence the map X ÝÑ X 1r�ksq is zero, i.e. TpX,Xr�ksq � 0, 1 ¤ k ¤ t. ¤

Corollary 7.4. Let X be an pn� kq-strong pn� 1q-cluster tilting subcategory of T, where 0 ¤ k ¤ n� 1.

(i) Xrn� t� 1s � Xrts � Xrt� 1s � � � � � Xrt� ks, @t P Z
(ii) TpX,Xrn� t� 1sq � 0, for 1 ¤ t ¤ n� k.

Proof. By Proposition 7.3 we have Xrn� 1s � X �Xr1s � � � � �Xrks and (i) follows. Now TpX,Xrn� t� 1sq is
contained in Xrts � � � � �Xrn�ks and clearly Xrts � � � � �Xrn�ks � Xr1s � � � � �Xrns � XJ for 1 ¤ t ¤ n�k. ¤

7.3. Gorensteinness of Strong Cluster Tilting Subcategories. Let X be an pn � 1q-cluster tilting
subcategory of T, where n ¥ 1. Let 0 ¤ k ¤ n�1 we say that X is strictly pn�kq-strong if X is pn�kq-strong
but X is not pn� k� 1q-strong. Our main aim in this section is to prove the following result. Note that (i) is
due to Keller-Reiten [21] and the case k � 1 in (iii) was observed independently by Iyama-Oppermann [17].

Theorem 7.5. Let X be an pn� 1q-cluster tilting subcategory of T, where n ¥ 1.

(i) If n � 1, then G-dimmod-X ¤ 1.
(ii) G-dimmod-X � 0 if and only if X is n-strong.
(iii) Assume that n ¥ 2 and X is pn� kq-strong, where 0 ¤ k ¤ n� 1. Then:

0 ¤ k ¤ n� 1

2
ùñ G-dimmod-X ¤ k

In particular:

(a) If n is odd and X is pn�1
2 q-strong, then: G-dimmod-X ¤ n�1

2 .

(b) If n is even and X is pn�1
2 q-strong, then: G-dimmod-X ¤ n�1

2 .

Moreover if X is strictly pn� kq-strong, then: G-dimmod-X � k.

We split the proof of Theorem 7.5 into three steps as Propositions 7.7, 7.8 and 7.9.
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7.3.1. Finiteness of spli mod-X. We first investigate when spli mod-X   8. We begin with the reformulation
of Theorem 5.4.

Proposition 7.6. Let X be a contravariantly finite subcategory of T and A P T.
(i) If X is 1-rigid and A P �X � Xr1s�X XJ1 r2s, then: pdHpAq ¤ 1.
(ii) Let t ¥ 2 and assume that X is pt� 1q-strong and t-rigid. Then:

A P �
X � Xr1s � � � � � Xrts�X XJt rt� 1s ùñ pdHpAq ¤ t.

The next result proves half of Theorem 7.5.

Proposition 7.7. Let X be an pn� 1q-cluster tilting subcategory of T, where n ¥ 1. Let 0 ¤ k ¤ n� 1 and
assume that X is pn� kq-strong. Then spli mod-X ¤ k provided that n ¥ 2k � 1.

Proof. If X is n-strong, then clearly Xrn � 1s � XJn � X and therefore any injective object of mod-X is
projective. Hence spli mod-X � 0. Assume that X is pn � 1q-strong. If n � 1, then the condition 0-
strong is vacuous, but Xrn � 1s � X � Xr1s, since T � X � Xr1s. Hence for any X P X, there exists a
triangle X1 ÝÑ X0 ÝÑ Xr2s ÝÑ X1r1s, where X1, X1 P X, This clearly implies that pdHpXr2sq ¤ 1, i.e.
spli mod-X ¤ 1. If n ¥ 2, then by Proposition 1.3 we have Xrn� 1s � X �Xr1s and clearly Xrn� 1s � XJ1 r2s.
Then by Proposition 1.2 we have pdHpXrn� 1sq ¤ 1, @X P X. Hence spli mod-X ¤ 1. If X is pn� 2q-strong
and n ¥ 3, then by Proposition 1.3 we have Xrn� 1s � X � Xr1s � Xr2s, and clearly X � XJ2 r3s, since n ¥ 3.
Then by Proposition 7.6 we have pdHpXrn� 1sq ¤ 2, @X P X. Hence spli mod-X ¤ 2.

Continuing in this way assume that X is pn � kq-strong, where 2 ¤ k ¤ n � 1. By Proposition 7.3
then we have Xrn � 1s � X � Xr1s � � � � � Xrks. Since clearly Xrn � 1s � XJk rk � 1s, we have Xrn � 1s ��
X�Xr1s�� � ��Xrks�XXJk rk�1s. Our assumption n ¥ 2k�1 gives n�k ¥ k�1, so the chain of subcategories

p�q shows that XJn�krn � k � 1s � XJk�1rks. Since X is pn � kq-strong, it follows that X � XJn�krn � k � 1s
and therefore X � XJk�1rks, i.e. X is pk � 1q-strong. Then Proposition 7.6 gives us that pdHpXrn� 1sq ¤ k,@X P X. We infer that spli mod-X ¤ k. ¤

7.3.2. Finiteness of silpmod-X. Now we turn our attention to the investigation of when silpmod-X is finite.
The following result combined with Proposition 7.7 proves the other half of Theorem 7.5.

Proposition 7.8. Let X be an pn� 1q-cluster tilting subcategory of T, where n ¥ 1. Let 0 ¤ k ¤ n� 1 and
assume that X is pn� kq-strong. Then silpmod-X ¤ k provided that n ¥ 2k � 1.

Proof. Let X P X be an arbitrary object. We shall show that id HpXq ¤ k. For the convenience of the reader
and to make the proof more transparent, we first treat the cases 0 ¤ k ¤ 2.

Case k � 0. Let first k � 0, i.e. X is n-strong. Then clearly we have Xrn� 1s � XJn � X, so by Corollary
6.9, mod-X is Frobenius and then G-dimmod-X � 0.

Case k � 1. Now assume that n ¥ 1 and k � 1, so X is pn � 1q-strong. First we treat the case n � 1.
Then the condition 0-strong is vacuous. For any X P X we have a triangle

Ω1
XpXr�1sq ÝÑ Cell0pXr�1sq ÝÑ Xr�1s ÝÑ Ω1

XpXr�1sqr1s
where Ω1

XpXr�1sq :� X�
0 P X and Cell0pXr�1sq :� X�

1 P X. Then we have a triangle

X ÝÑ X�
0 r2s ÝÑ X�

1 r2s ÝÑ Xr1s
which induces a short exact sequence

0 ÝÑ HpXq ÝÑ HpX�
0 r2sq ÝÑ HpX�

1 r2sq ÝÑ 0

and the objects HpX�
0 r2sq, HpX�

1 r2sq are injective in mod-X. Hence id HpXq ¤ 1 and therefore silpmod-X ¤ 1.
Now assume that n ¥ 2 and therefore we have: TpX,Xr�isq � 0, 1 ¤ i ¤ n � 1. Consider the triangle

arising from the tower CellXr�1s:
Ωn

XpXr�1sqrn� 1s ÝÑ Celln�1pXr�1sq ÝÑ Xr�1s ÝÑ Ωn
XpXr�1sqrns

Setting Ωn
XpXr�1sq :� X�

0 and C1 � Celln�1pXr�1sqq, we have a triangle

X�
0 rns ÝÑ C1r1s ÝÑ X ÝÑ X�rn� 1s (7.1)

and we know that X�
0 P X and C P X �Xr1s � � � � �Xrn� 1s. Applying H to (7.1) and using that HpC1r1sq � 0

and the fact that X is pn� 1q-strong, so TpX,Xr�isq � 0, 1 ¤ i ¤ n� 1, we have an exact sequence

0 ÝÑ HpXq ÝÑ HpX�
0 rn� 1sq ÝÑ HpC1r2sq ÝÑ 0 (7.2)
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and HpC1r�isq � 0, for �1 ¤ i ¤ n�2. It follows that for the object C1r�n�1s we have TpX, C1r�n�1sr1sq �
TpX, C1r�n� 1sr2sq � � � � � TpX, C1r�n� 1srnsq � 0, i.e.

C1 P XJn rn� 1s � Xrn� 1s
It follows that C1r2s P Xrn � 1s. We infer that the object HpC1r2sq is injective in mod-X and therefore the
short exact sequence (7.2) is an injective coresolution of HpXq, i.e. id HpXq ¤ 1. Hence silpmod-X ¤ 1.

Case k � 2. Next assume that n ¥ 3 and k � 2, so X is pn � 2q-strong. Equivalently TpX,Xr�isq � 0,
1 ¤ i ¤ n� 2. Then as above we have a triangle

X ÝÑ X�
0 rn� 1s ÝÑ C1r2s ÝÑ Xr1s (7.3)

where X�
0 P X and C1 P X � Xr1s � � � � � Xrn� 1s, such that the following sequence is exact:

0 ÝÑ HpXq ÝÑ HpX�
0 rn� 1sq ÝÑ HpC1r2sq ÝÑ 0

Applying H to (7.3) and using that C1r1s P Xr1s � � � � �Xrns and the fact that X is pn� 2q-strong, the induced
long exact sequence shows that TpX, C1r1sq � TpX, C1q � TpX, C1r�1sq � � � �TpX, C1r�n� 3sq � 0, i.e.

C1 P XJn�1rn� 2s
Now consider the object C1r2s and let

Ωn
XpC1r1sqrn� 1s ÝÑ Celln�1pC1r1sq ÝÑ C1r1s ÝÑ Ωn

XpC1r1sqrns
be the triangle arising from the tower CellC1r2sr�1s � CellC1r1s. Setting Ωn

XpC1r1sq :� X�
1 and C2 :�

Celln�1pC1r1sq, we have a triangle

C1r2s ÝÑ X�
1 rn� 1s ÝÑ C2r2s ÝÑ C1r3s (7.4)

where X�
1 P X and C1, C2 P X �Xr1s � � � � �Xrn� 1s. We claim that HpC1r3sq � 0 and C2r2s P Xrn� 1s. First

note that since X is pn�2q-strong, by Proposition 7.3 it follows that Xrn�1s � X�Xr1s�� � ��Xrn�pn�2sqs �
X � Xr1s � Xr2s. Hence Xrn� 2s � Xr1s � Xr2s � Xr3s � Xr1s � Xr2s � � � � � Xrns � XJ. Since n ¥ 3, it follows
that HpXrn� 3sq � 0 and therefore applying H to the triangle (1.2) we infer that HpC1r3sq � 0. On the other
hand applying H to the triangle (7.4) and using that X is pn� 2q-strong and C1 P XJn�1rn� 2s, we see that

TpX, C2r�isq � 0, �1 ¤ i ¤ n� 2. This means that C2r�n� 1s P XJn � X and therefore

C2 P XJn rn� 1s � Xrn� 1s
It follows that C2r2s P Xrn� 1s. Therefore the triangle (7.4) induces a short exact sequence

0 ÝÑ HpC1r2sq ÝÑ HpX�
1 rn� 1sq ÝÑ HpC2r2sq ÝÑ 0

where the object HpC2r2sq is injective in mod-X. We infer that the exact sequence

0 ÝÑ HpXq ÝÑ HpX�
0 rn� 1sq ÝÑ HpX�

1 rn� 1sq ÝÑ HpC2r2sq ÝÑ 0

is an injective resolution of HpXq and therefore id HpXq ¤ 2. Hence silpmod-X ¤ 2.
Case k ¤ n � 1. Now we treat the general case, so assume 0 ¤ k ¤ n � 1 and n ¥ 2k � 1. Working as

above we may construct triangles

X ÝÑ X�
0 rn� 1s ÝÑ C1r2s ÝÑ Xr1s (7.5)

C1r2s ÝÑ X�
1 rn� 1s ÝÑ C2r2s ÝÑ C1r3s (7.6)

...

Ck�1r2s ÝÑ X�
k�1rn� 1s ÝÑ Ckr2s ÝÑ Ck�1r3s (7.7)

where X�
i P X, for 0 ¤ i ¤ k � 1, and Ci P X � Xr1s � � � � � Xrn � 1s, for 0 ¤ i ¤ k. It follows that

Cir1s P Xr1s � Xr2s � � � � � Xrns � XJ, so the above triangles induce exact sequences:

0 ÝÑ HpXq ÝÑ HpX�
0 rn� 1sq ÝÑ HpC1r2sq ÝÑ 0 (7.8)

0 ÝÑ HpC1r2sq ÝÑ HpX�
1 rn� 1sq ÝÑ HpC2r2sq ÝÑ HpC1r3sq ÝÑ � � � (7.9)

...

0 ÝÑ HpCk�1r2sq ÝÑ HpX�
k�1rn� 1sq ÝÑ HpCkr2sq ÝÑ HpCk�1r3sq ÝÑ � � � (7.10)

Clearly then to show that id HpXq ¤ k, it suffices to show that:

HpCir3sq � 0, 1 ¤ i ¤ k � 1 and Ckr2s P Xrn� 1s p:q
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Since X is pn� kq-strong, by Proposition 7.3 we have Xrn� 1s � X � Xr1s � � � � � Xrks. It follows that
Xrn� is � Xri� 1s � Xris � � � � � Xrk � i� 1s

and therefore

Xrn� is � XJ, k ¤ n� i� 1, 2 ¤ i ¤ k � 1 (7.11)

Applying H to the triangle (7.5) and Using (7.11) and the fact that C1r1s P XJ, we see directly that

HpC1r�n� k � 1sq � � � � � HpC1q � HpC1r1sq � HpC1r3sq � � � � � HpC1rksq � 0 (7.12)

Then using (7.12) it follows that (7.9) becomes a short exact sequence

0 ÝÑ HpC1r2sq ÝÑ HpX�
1 rn� 1sq ÝÑ HpC2r2sq ÝÑ 0 (7.13)

and the long exact sequence induced after applying H to the triangle (7.6), gives us

HpC2r�n� ksq � � � � � HpC2q � HpC2r1sq � HpC2r3sq � � � � � HpC2rk � 1sq � 0 (7.14)

Continuing inductively in this way we see HpCk�1r3sq � 0 and

HpCkr�n� 2sq � � � � � HpC�n�1q � HpC2r1sq � 0 (7.15)

This means that Ckr�n � 1s P XJn � X and therefore Ck P Xrn � 1s. Hence Ckr2s P Xrn � 1s and the exact
sequence (7.10) becomes a short exact sequence

0 ÝÑ HpCk�1r2sq ÝÑ HpX�
k�1rn� 1sq ÝÑ HpCkr2sq ÝÑ 0 (7.16)

and the object HpCkr2sq is injective in mod-X. It follows that the exact sequence

0 ÝÑ HpXq ÝÑ HpX�
0 rn� 1sq ÝÑ HpX�

1 rn� 1sq ÝÑ � � � ÝÑ HpX�
k�1rn� 1sq ÝÑ HpCkr2sq ÝÑ 0

is an injective coresolution of HpXq and therefore id HpXq ¤ k. We conclude that silpmod-X ¤ k. ¤

Finally the next result completes the proof of Theorem 7.5.

Proposition 7.9. Let X be an pn� 1q-cluster tilting subcategory of T, where n ¥ 1. Let 0 ¤ k ¤ n� 1 and
assume that X is strictly pn� kq-strong. If n ¥ 2k � 1, then: G-dimmod-X � k.

Proof. Let X P X. By Proposition 7.7, we have pdHpXrn� 1sq ¤ k. Assuming that pdHpXrn� 1sq ¤ k� 1,@X P X, we show that X is pn � k � 1q-strong. If 0 ¤ k ¤ 1, then the assertion is clear. So assume
that k ¥ 2. We consider triangles pTtq : At ÝÑ Xt�1 ÝÑ At�1 ÝÑ Atr1s, where each map Xt�1 ÝÑ
Xt�1 is a right X-approximation, t ¥ 1, and A0 � Xrn � 1s, so that At � Ωt

XpXrn � 1sq. Applying H
to the triangle pT1q, we obtain an exact sequence 0 ÝÑ HpA1q ÝÑ HpX0q ÝÑ HpXrn � 1sq ÝÑ 0 and
TpX, A1r�isq � 0, 1 ¤ i ¤ n�k. Using this and applying H to the triangle pT2q, we obtain an exact sequence
0 ÝÑ HpA2q ÝÑ HpX1q ÝÑ HpA1q ÝÑ 0 and TpX, A2r�isq � 0, 1 ¤ i ¤ n�k�1. Continuing in this way, we
finally obtain an exact sequence 0 ÝÑ HpAk�1q ÝÑ HpXk�2q ÝÑ HpAk�2q ÝÑ 0 and TpX, Ak�1r�isq � 0,
1 ¤ i ¤ n� 2k � 2. Since we assumed that pdHpXrn� 1sq ¤ k � 1, the object HpAk�1q is projective. Hence
there is a map α : X� ÝÑ Ak�1, where X� P X, inducing an isomorphism Hpαq : HpX�q �ÝÑ HpAk�1q. Let
X� ÝÑ Ak�1 ÝÑ B ÝÑ X�r1s be a triangle. Applying H to this triangle and using that X is pn� kq-strong,
the fact that Hpαq is invertible, and the vanishing condition TpX, Ak�1r�isq � 0, 1 ¤ i ¤ n � 2k � 2, we
infer that TpX, Br�k � 1s � TpX, Br�k � 2s � � � � � TpX, Br�k � nsq � 0, i.e. Br�ks P XJn � X. Hence
B P Xrks and this implies that the map B ÝÑ X�r1s is zero since it lies in TpX,Xr�k � 1s and this space
is zero since 1 ¤ k � 1 ¤ n � k and X is pn � kq-strong and n ¥ 2k � 1. We infer that Ak�1 admits

a direct sum decomposition Ak�1 � X� ` X 1rks. On the other hand, since Ak�1 � Ωk�1
X pXrn � 1sq, we

know by Remark 2.2 that Ak�1 lies in X � Xr1s � � � � � Xrk � 1s. Since clearly any map from an object of
X � Xr1s � � � � � Xrk � 1s to an object from Xrks is zero, it follows that the projection Ak�1 ÝÑ X 1rks is zero
and this implies that Ak�1 � X� P X. Then Ak�2 lies in X �Xr1s and using that Ai � Ωi

XpXrn� 1sq, @i ¥ 1,
it follows inductively that A1 P X � Xr1s � � � �Xrk � 2s. Then Xrn � 1s lies in X � Xr1s � � � �Xrk � 1s, hence
Xrn� 1s � X � Xr1s � � � �Xrk � 1s. Then Proposition 7.3 shows that X is pn� k � 1q-strong as required. ¤

Remark 7.10. Let X be an pn� 1q-cluster tilting subcategory of T, where n ¥ 1. Then Theorem 7.5 gives
the following picture:

 If X is n-strong, then: G-dimmod-X � 0. If X is strictly pn� 1q-strong, then: G-dimmod-X � 1. If X is strictly pn� 2q-strong and n ¥ 3, then: G-dimmod-X � 2.
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 If X is strictly pn� 3q-strong and n ¥ 5, then: G-dimmod-X � 3.
... If X is strictly pn� kq-strong and n ¥ 2k � 1, then: G-dimmod-X � k.
... If X is strictly 3-strong and n ¤ 7, then: G-dimmod-X � n� 3 ¤ 4. If X is strictly 2-strong and n ¤ 5, then: G-dimmod-X � n� 2 ¤ 3. If X is strictly 1-strong and n ¤ 3, then: G-dimmod-X � n� 1 ¤ 2. If n � 1, then: G-dimmod-X ¤ 1.

Since for an abelian category A we have G-dimA ¤ gl. dimA , with equality if gl. dimA   8, we have the
following consequence.

Corollary 7.11. Let X be an pn � 1q-cluster tilting subcategory of T, where n ¥ 1. Let 0 ¤ k ¤ n � 1 and
assume that X is pn � kq-strong. If n ¥ 2k � 1, then either gl. dimmod-X � 8 or else gl. dimmod-X ¤ k.
Moreover if gl. dimmod-X   8 and X is strictly pn� kq-strong, then gl. dimmod-X � k.

Corollary 7.12. Let X be an pn� kq-strong pn� 1q-cluster tilting subcategory of T, 0 ¤ k ¤ n� 1. Assume
that n ¥ 2k � 1. Then mod-X is Frobenius if and only if TpX,Xr�n� k � isq � 0, 1 ¤ i ¤ k.

The next result characterizes strong pn � 1q-cluster tilting subcategory of T in terms of vanishing of the
obstructions groups O�,�.
Proposition 7.13. Let X be a pn� 1q-cluster tilting subcategory of T, where n ¥ 2. Then for 1 ¤ k ¤ n� 1,
the following statements are equivalent:

(i) X is pn� kq-strong.
(ii) OXr�is,� � 0, 1 ¤ i ¤ n� k.

In particular if the functor H : T ÝÑ mod-X is full, then X is pn� kq-strong, for any k with 1 ¤ k ¤ n� 1,
and mod-X is 1-Gorenstein.

Proof. (i) ñ (ii) Since X is pn � kq-strong, we have HpXr�isq � TpX,Xr�isq � 0, for 1 ¤ i ¤ n � k. This
clearly implies that OXr�is,� � 0, 1 ¤ i ¤ n� k.

(ii)ñ (i) Assume that OXr�is,� � 0, 1 ¤ i ¤ n�k, i.e. the maps TpXr�isq, Bq ÝÑ HompHpXr�isq,HpBqq
are surjective, @B P T, @X P X. For X P X, consider the triangle

Ωn
XpXr�1sqrn� 1s ÝÑ Celln�1pXr�1sq ÝÑ Xr�1s ÝÑ Ωn

XpXr�1sqrns
arising from the cellular tower of Xr�1s. Then we know that Ωn

XpXr�1sq P X and Celln�1pXr�1sq P X �
Xr1s � � � � � Xrn � 1s. Setting X� :� Ωn

XpXr�1sq P X and C :� Celln�1pXr�1sqr1s P Xr1s � Xr2s � � � � � Xrns,
we have, by Proposition 4.2, that HpCq � 0 and moreover there is a triangle

X�rns βÝÑ C
αÝÑ X

γÝÑ X�rn� 1s pT q
Applying H to the triangle pT q and using that HpX�risq � 0, 1 ¤ i ¤ n, we get isomorphisms in mod-X:

Hpαr�isq : HpCr�isq �ÝÑ HpXr�isq, 1 ¤ i ¤ n� 1 (7.17)

Since OXr�is,Cr�is � 0, 1 ¤ i ¤ n� k, there are maps δi : Xr�is ÝÑ Cr�is in T, 1 ¤ i ¤ n� k such that:

Hpδiq � Hpαr�isq�1 : HpXr�isq �ÝÑ HpCr�isq, 1 ¤ i ¤ n� k (7.18)

Then the map δiris : X ÝÑ C lies in TpX,Cq and this is zero since HpCq � 0. Hence δiris � 0 and therefore
δi � 0, 1 ¤ i ¤ n�k. Then the isomorphisms Hpδiq are zero and this implies that HpCr�isq � HpXr�isq � 0,
i.e. TpX, Xr�isq � 0, 1 ¤ i ¤ n � k. Since X is an arbitrary object of X, we infer that TpX,Xr�isq � 0,
1 ¤ i ¤ n� k and consequently the pn� 1q-cluster tilting subcategory X is pn� kq-strong.

If H is full, then O?,� � 0, in particular OXr�is,� � 0, 1 ¤ i ¤ n� 1. Then by (i), X is pn� 1q-strong and
therefore mod-X is 1-Gorenstein by Theorem 7.5. ¤
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7.4. Keller-Reiten’s Morita Theorem for the pn� 1q-Cluster category. We use the results of subsec-
tion 7.3 to give an application to the characterization of the pn�1q-cluster category of a simply laced Dynkin
quiver due to Keller-Reiten [22]. First we recall some definitions which also will be used later on.

Assume that the triangulated category T is k-linear over a field k, all Hom-spaces are finite-dimensional,
and admits a Serre functor S [13]. Thus S is an triangulated auto-equivalence of T, and for any objects
A,B in T there are natural isomorphisms

DHomTpA,Bq �ÝÑ HomTpB, SAq
where D denotes the k-dual functor. If T admits a Serre functor S, then T is called (weakly) d-Calabi-Yau,
for some d ¥ 1, provided that Sp?q � p?qrds as (additive) triangulated functors.

Let k be a field and H a finite-dimensional hereditary k-algebra. Then it is well-known that the bounded
derived category Dbpmod-Hq of finite-dimensional H-modules admits a Serre functor ν. If d ¥ 1 is an

integer, then the d-cluster category C
pdq
H of H, as defined by Keller [20], is the orbit category C

pdq
H :�

Dbpmod-HqLpν�1rdsqZ of Dbpmod-Hq under the action of the automorphism group generated by X ÞÑ
ν�1pXrdsq. If H � kQ is the path algebra of a quiver Q, then we say that C

pdq
H is the d-cluster category

of the quiver Q and we write C
pdq
Q . As shown by Keller [20], the d-cluster category C

pdq
H is a d-Calabi-Yau

triangulated category and the projection functor π : Dbpmod-kQq ÝÑ C
pdq
H is triangulated.

Recall that a triangulated category T is algebraic if T is triangle equivalent to the stable category of a
Frobenius category.

Theorem 7.14. [22] Let T be a k-linear triangulated category with finite-dimensional Hom-spaces over an
algebraically closed field k. Then for an integer n ¥ 1, the following statements are equivalent.

(i) T is triangle equivalent to the pn�1q-cluster category C
pn�1q
Q of some simply laced Dynkin quiver Q.

(ii) T is algebraic pn � 1q-Calabi-Yau and admits a pn � 1q-strong pn � 1q-cluster tilting object T such
that the endomorphism algebra EndTpT q has finite global dimension.

Proof. (i)ñ (ii) If condition (i) holds, then by Keller [20] we know that C
pn�1q
Q is algebraic pn�1q-Calabi-Yau

and it is shown by Keller-Reiten in [21] that πpHq is a pn�1q-cluster tilting object in C
pn�1q
Q , where H � kQ

considered as a stalk complex in Dbpmod-Hq. Moreover in [22] it is shown that the pn � 1q-cluster tilting
object πpHq is pn� 1q-strong and its endomorphism algebra EndpπpHqq has finite global dimension.

(ii) ñ (i) Conversely if condition (ii) holds, then by Theorem 7.5 we have that EndTpT q is 1-Gorenstein
and then by Corollary 7.11, EndTpT q is hereditary. Setting H � EndTpT q, by Theorem 4.2 in Keller-Reiten

[22], there is a triangle equivalence F : T
�ÝÑ C

pn�1q
H such that F pT q � πpHq. ¤

7.5. Abelian Subcategories. Let X be an pn � 1q-cluster tilting subcategory of T. We show that if the
cluster tilted category mod-X has finite global dimension, and X is pn� kq-strong, for some 0 ¤ k ¤ n

2 , then
mod-X can be realized as a full subcategory of T, in some cases via a B-functor.

For an abelian category M we denote by Proj¤k M, resp. Proj 8M, the full subcategory of M consisting
of the objects with projective dimension ¤ k, resp.   8.

Proposition 7.15. Let X be a contravariantly finite t-rigid subcategory of T, t ¥ 1, and assume that X ispt� 1q-strong, if t ¥ 2. Then the functor H : T ÝÑ mod-X induces a full embedding

H :
�
X � Xr1s � � � � � Xrts�X XJt rt� 1s ÝÑ Proj¤t mod-X

which is an equivalence if X is t-strong.

Proof. Set Ut :� �
X �Xr1s � � � � �Xrts�XXJt rt� 1s and Ht :� H|Ut . First note that by Theorem 5.4, we have

pdHpAq ¤ t, for any object A P Ut, so we have a functor Ht : Ut ÝÑ Proj¤k mod-X.
Let α : A ÝÑ B be a map in Ut such that Hpαq � 0. Then α factorizes through the map h0

A : A ÝÑ
Ω1

XpAqr1s, say via a map β : Ω1
XpAqr1s ÝÑ B. Since X is t-rigid and A lies in X � Xr1s � � � � � Xrts, it

follows that Ωt
XpAq lies in X and then it is easy to see that Ω1

XpAq lies in X � Xr2s � � � � � Xrt � 1s, hence
Ωt

XpAqr1s P Xr1s � Xr2s � � � � � Xrts. Since B P XJt rt � 1s, we have TpX, Br�isq � 0, 1 ¤ i ¤ t. Since, as
easily seen, any map from an object form Xr1s � Xr2s � � � � � Xrts to an object in XJt rt � 1s is zero, we have
β � 0. Therefore α � 0 and Ht is faithful. Next let α : Ω1

XpAq ÝÑ B be an X-ghost map. Then α factorizes
through the map h1

A : Ω1
XpAq ÝÑ Ω2

XpAqr1s,, say via a map β : Ω2
XpAqr1s ÝÑ B. As above, Ω2

XpAq lies in
X �Xr1s � � � � �Xrt� 2s, hence Ω2

XpAqr1s P Xr1s �Xr2s � � � � �Xrt� 1s. Since B P XJt rt� 1s, it follows directly
that any map from an object form Xr1s � Xr2s � � � � � Xrt� 1s to an object in XJt rt� 1s is zero, hence β � 0,
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and therefore α � 0. Consequently GhXpΩ1
XpAq, Bq � 0, and therefore the obstruction group OA,B vanishes.

Then from Proposition 3.6, we infer that the map TpA,Bq ÝÑ HompHpAq,HpBq is surjective, hence Hpαq � rα
for some map α : A ÝÑ B. It follows that Ht is full.

Now consider an object F P mod-X, with pdF ¤ t. Then HpAq � F , and we may choose A P X � Xr1s.
We have a projective resolutions 0 ÝÑ HpXt

Aq ÝÑ HpXt�1q ÝÑ � � � ÝÑ HpX1q ÝÑ HpX0q ÝÑ HpAq ÝÑ 0
in mod-X. The last map of the resolution gives us a map Xt ÝÑ Xt�1 which induces a triangle Xt ÝÑ
Xt�1 ÝÑ At�1 ÝÑ Xtr1s. Applying H to this triangle and using that X is pt�1q-strong, so TpX,Xr�isq � 0,
1 ¤ i ¤ t�1, we see easily that TpX, At�1r�isq � 0, 1 ¤ i ¤ t�1, and moreover Im

�
HpXt�1q ÝÑ HpXt�2q� �

HpAt�1q. Consider the induced monomorphism HpAt�1q ÝÑ HpXt�2q. Since Xt P X, we have At�1 P X�Xr1s
and Ω1

XpAt�1q � Xt P X. Since X is pt � 1q-strong, by Lemma 6.4, we have GhXpΩ1
XpAt�1q, Xt�2q � 0 and

therefore OAt�1,Xt�2 � 0. It follows that the monomorphism HpAt�1q ÝÑ HpXt�2q is induced by a map
At�1 ÝÑ Xt�2. Consider a triangle At�1 ÝÑ Xt�2 ÝÑ At�2 ÝÑ At�1r1s. As above, applying H to this
triangle we see easily that TpX, At�2r�isq � 0, 1 ¤ i ¤ t � 1, and moreover Im

�
HpXt�2q ÝÑ HpXt�3q� �

HpAt�2q. Moreover we have At�2 P X � Xr1s � Xr2s and Ω1
XpAt�2q � At�1 P X � Xr1s. By Lemma 6.4 we

have GhXpΩ1
XpAt�2q, Xt�3q � 0, so OAt�2,Xt�3 � 0. We infer that the monomorphism HpAt�2q ÝÑ HpXt�3q

is induced by a map At�2 ÝÑ Xt�3. Considering a triangle At�2 ÝÑ Xt�3 ÝÑ At�3 ÝÑ At�2r1s and
continuing in this way, we construct triangles Aj ÝÑ Xj�1 ÝÑ Aj�1 ÝÑ Ajr1s, with Xj P X, and exact
sequences 0 ÝÑ HpAjq ÝÑ HpXj�1q ÝÑ HpAj�1q ÝÑ 0, for 1 ¤ j ¤ t, where At � Xt, and the objects
Aj satisfy TpX, Ajr�isq � 0, 1 ¤ i ¤ t � 1. In particular for j � 1, we have a triangle A1 ÝÑ X0 ÝÑ
A0 ÝÑ A1r1s, where A0 P X � Xr1s � � � � � Xrts and TpX, A0r�isq � 0. 1 ¤ i ¤ t � 1, and this implies that
HpA0q � HpAq � F . Hence F is isomorphic to an object HpA0q, where A0 lies in

�
X�Xr1s�� � ��Xrts�XXJt�1rts.

Finally assume that X is t-strong, i.e. we have in addition TpX,Xr�tsq � 0. Then applying H to the triangle
A1 ÝÑ X0 ÝÑ A0 ÝÑ A1r1s and using that A1, A0 P XJt�1rts, we have directly that HpA0r�tsq � 0, so A0

lies in XJt rt� 1s and therefore A0 P Ut. This shows that H : Ut ÝÑ Proj¤t mod-X is essentially surjective. ¤
Theorem 7.16. Let X be an pn� kq-strong pn� 1q-cluster tilting subcategory of T, where 0 ¤ k ¤ n� 1.

(i) If mod-X has finite global dimension, and n ¥ 2k, then gl. dimmod-X ¤ k and there is an equivalence

H :
�
X � Xr1s � � � � � Xrks�X XJk rk � 1s �ÝÑ mod-X

(ii) If k � 1, then the induced full embedding T : mod-X ÝÑ T is a B-functor, which extends
uniquely to an additive functor Dbpmod-Xq ÝÑ T commuting with the shifts.

Proof. Under the imposed assumptions, as in the proof of Proposition 7.7, we see that X is pk�1q-strong. By
Proposition 7.15, the functor H induces a full embedding Hk :

�
X � Xr1s � � � � � Xrks� X XJk rk � 1s ÝÑ

Proj¤k mod-X. Since, by Theorem 7.5, mod-X is k-Gorenstein, finiteness of gl. dimmod-X implies that
gl. dimmod-X ¤ k, and therefore mod-X � Proj¤k mod-X. On the other hand since n ¥ 2k, it follows
that XJn�krn� k� 1s � XJk rk� 1s, i.e. X is k-strong. Then by Proposition 7.15, the functor Hk is essentially
surjective, hence an equivalence. Finally assume that k � 1, so n ¥ 2, X is pn�1q-strong, and mod-X is hered-
itary. By Corollary 3.9 we have an isomorphism TpA,Br1sq � Ext1pHpAq,HpBqq, @A,B P �X �Xr1s�XXJ1 r2s.
It follows easily from this that the induced fully faithful functor T : mod-X � �

X � Xr1s�X XJ1 r2s ÝÑ T is aB-functor; details are left to the reader. By a result of Amiot [1], T extends uniquely to an additive functor
Dbpmod-Xq ÝÑ T commuting with the shift functors. ¤

Note that the case n � k � 1, where the strongness condition is vacuous, the functor T gives the full
embedding Injmod-X � Xr2s ÝÑ T.

8. Gorenstein-Projectives

Our aim in this section is to investigate the full subcategory of Gorenstein-projective objects of the cluster
tilted category mod-X, where X is a pn� 1q-strong pn� 1q-cluster tilting subcategory.

For convenience, we call in this section pn � 1q-strong pn � 1q-cluster tilting subcategories simply strongpn� 1q-cluster tilting subcategories.

8.1. Gorenstein-Projectives. To proceed further it is convenient to have a description of the full subcat-
egories of Gorenstein-projective and Gorenstein-injective objects of the cluster tilted category mod-X.

Let A be an abelian category. A complex of projective objects P  : � � � ÝÑ P�1 ÝÑ P 0 ÝÑ P 1 ÝÑ � � �
is called totally acyclic if P  and the induced complex A pP , Qq are acyclic, for any projective object Q
of A . Dually a complex of injective objects I : � � � ÝÑ I�1 ÝÑ I0 ÝÑ I1 ÝÑ � � � is called totally acyclic
if I and the induced complex A pJ, Iq are acyclic for any injective object J of A .
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Definition 8.1. (i) An object G P A is called Gorenstein-projective if G � CokerpP�1 ÝÑ P 0q for
some totally acyclic complex P  of projectives.

(ii) An object G P A is called Gorenstein-injective if G � KerpI0 ÝÑ I1q for some totally acyclic
complex I of injectives.

The full subcategory of Gorenstein-projective, resp. Gorenstein-injective, objects of A is denoted by
GProjA , resp. GInjA . Also we denote by GProjA , resp. GInjA , the stable category of GProjA , resp.
GInjA , modulo projectives, resp. injectives.

In the following remark we remind the reader of basic properties of Gorenstein categories which will be
used in the sequel. We refer to [12, 7], for more detailed discussions.

Remark 8.2. Let A be an abelian category with enough projective and/or injective objects. For any objects G1 P GProjA , G2 P GInjA , A P A , and any k ¥ 1 there are isomorphisms:

ExtkpG1, Aq �ÝÑ HompΩkG1, Aq and ExtkpA,G2q �ÝÑ HompA,ΣkG2q
 The categories GProjA and GInjA are Frobenious exact subcategories of A . Hence the stable categories

GProjA and GInjA are triangulated.

 If A is Gorenstein then Proj 8A � Inj 8A ; if A is of Goresntein dimension G-dimA � d, then
Proj 8A � Proj¤d A (and dually Inj 8A � Inj¤d A ). Moreover we have GProjA � ΩdA and GInjA �
ΣdA , see [7, Theorem 4.16]. It follows that if G-dimA ¤ 1, then GProjA consists of the subobjects of the
projective objects and GInjA consists of the factors of the injectives. The inclusion functor GProjA ÝÑ A admits as a right adjoint the functor Ω�dΩd : A ÝÑ GProjA .

Dually the inclusion functor GInjA ÝÑ A admits as a left adjoint the functor Σ�dΣd : A ÝÑ GInjA .

Let A be in T. Then there exists a triangle

Ωn
XpArnsqr�1s ÝÑ Celln�1pArnsqr�ns ÝÑ A ÝÑ Ωn

XpArnsq (8.1)

where the last map ωn�1
Arnsr�ns : A ÝÑ Ωn

XpArnsq is a left X-approximation of A and

Celln�1pArnsqr�ns P Xr�ns � Xr�n� 1s � � � � � Xr�1s
Lemma 8.3. Assume that the pn � 1q-cluster tilting subcategory X is strong. Then the full subcategory
Projmod-X, resp. Injmod-X, of projective, resp. injective, objects of mod-X is functorially finite in mod-X.
Moreover for any object A P T, the map

Hpωn�1
Arnsr�nsq : HpAq ÝÑ H

�
Ωn

XpArnsq�
is a left projective approximation of HpAq, and the object HpAq is Gorenstein-projective if and only if the map
Hpωn�1

Arnsr�nsq is a monomorphism.

Proof. We know that mod-X has enough projective and enough injective objects. Hence Projmod-X is con-
travariantly finite and Injmod-X is covariantly finite. Let F � HpAq P mod-X. We claim that the map
Hpωn�1

Arnsr�nsq : HpAq ÝÑ HpΩn
XpArnsqq induced by the triangle (8.1) is a left projective approximation of

HpAq. Indeed HpΩn
XpArnsqq is projective since Ωn

XpArnsq P X. Let α : HpAq ÝÑ HpXq be a map, where

X P X. By applying the Octahedral axiom to the composition γ1
A �ωn�1

Arnsr�ns : Cell1pAq ÝÑ A ÝÑ Ωn
XpArnsq,

it is easy to see that there is triangle Ωn
XpArnsqr�1s ÝÑ B ÝÑ Cell1pAq ÝÑ Ωn

XpArnsq, where B lies in
Xr1s � � � � � Xrn � 1s � Xr�ns � � � � � Xr�1s. Now since Cell1pAq lies in X � Xr1s, the composition Hpγ1

Aq � α :
HpCell1pAqq ÝÑ HpAq ÝÑ HpXq is of the form Hpβq for some map β : Cell1pAq ÝÑ X. Since the pn�1q-cluster
tilting subcategory X is strong, any map from an object in Xr1s�� � ��Xrn�1s�Xr�ns�� � ��Xr�1s to an object
in X is clearly zero, and therefore the composition of B ÝÑ Cell1pAq with β is zero. Hence there exists a map
ρ : Ωn

XpArnsq ÝÑ X such that β � γ1
A �ωn�1

Arnsr�ns �ρ. Then Hpγ1
Aq�α � Hpβq � Hpγ1

Aq�Hpωn�1
Arnsr�nsq �Hpρq,

and since Hpγ1
Aq is invertible, we have α � Hpωn�1

Arnsr�nsq � Hpρq. This shows that Hpωn�1
Arnsr�nsq is a left pro-

jective approximation of HpAq and Projmod-X is covariantly finite in mod-X. If Hpωn�1
Arnsr�nsq is a monomor-

phism, then HpAq is Gorenstein-projective as a subobject of the projective object HpΩn
XpArnsq. Conversely

if HpAq is Gorenstein-projective, then there is a monomorphism µ : HpAq ÝÑ HpXq, where X P X. Since µ
factorizes through Hpωn�1

Arnsr�nsq, it follows that the latter is a monomorphism.

The proof that Injmod-X is contravariantly finite is dual and is left to the reader. ¤

The following characterization of Gorenstein-projective functors will be useful later; its dual version con-
cerning Gorenstein-injective functors is left to the reader.
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Lemma 8.4. Let X be a strong pn � 1q-cluster tilting subcategory of T. Then for any object A P T the
following statements are equivalent.

(i) HpAq is Gorenstein-projective.
(ii) The map A ÝÑ Ωn

XpArnsq induces a monomorphism HpAq ÝÑ H
�
Ωn

XpArnsq�.
(iii) Case n ¥ 2: A P pJXX XJq � X, or equivalently H

�
Celln�1pArnsqr�ns� � 0.

Case n � 1: GhXpXr�1s, Aq � TpXr�1s, Aq, i.e. any map Xr�1s ÝÑ A, with X P X is X-ghost.

Proof. Since mod-X is 1-Gorenstein, by Remark 8.2, an object F � HpAq in mod-X is Gorenstein-projective
if and only if F is a subobject of a projective object. Clearly this is equivalent to say that F admits a
monomorphic left (Projmod-X)-approximation. Then the equivalence (i) ô (ii) follows from Corollary 8.3.

(ii) ô (iii) If n ¥ 2, then applying HpAq to the triangle p8.1q we have a long exact sequence

� � � ÝÑ H
�
Ωn

XpArnsqr�1s� ÝÑ H
�
Celln�1pArnsqr�ns� ÝÑ HpAq ÝÑ H

�
Ωn

XpArnsq� ÝÑ � � �
Since Ωn

XpArnsq P X it follows that H
�
Ωn

XpArnsqr�1s� � 0. Hence the map HpAq ÝÑ H
�
Ωn

XpArnsq� is a

monomorphism if and only if H
�
Celln�1pArnsqr�ns� � 0. Since always Celln�1pArnsq lies in pX�� � ��Xrn�1sq

it follows that Celln�1pArnsqr�ns lies in pXr�ns � � � � � Xr�1sq which is equal to JX by Corollary 4.6. Hence
H
�
Celln�1pArnsqr�ns� � 0 if and only if Celln�1pArnsqr�ns lie in Ker H � XJ, and therefore if and only if

Celln�1pArnsqr�ns lies in JXXXJ. Using the triangle (8.1) this in turn is equivalent to A P pJXXXJq �X. If
n � 1, then the triangle p8.1q takes the form X1

Ar1sr�1s ÝÑ X0
Ar1sr�1s ÝÑ A ÝÑ X1

Ar1s and then HpAq
is Gorenstein-projective iff the middle map is killed by H, equivalently the middle map factorizes through
XJ. Since n � 1 we have XJ � Xr1s and then clearly HpAq is Gorenstein-projective if and only if any map
Xr�1s ÝÑ A, with X P X, is X-ghost, i.e. factorizes through an object from Xr1s. ¤

It is well known that over a d-Gorenstein abelian category A the full subcategory of Gorenstein-projectives
is contravariantly finite and the full subcategory of objects with finite projective dimension which coincides
with the full subcategory of objects with finite injective dimension, is functorially finite. The next result
describes the Gorenstein-projective approximation and the left and right approximation by objects of finite
projective dimension of any object of the 1-Gorenstein abelian category mod-X.

Proposition 8.5. Let X be a strong pn � 1q-cluster tilting subcategory of T. Then the full subcategorypJXX XJq � X is contravariantly finite in T. More precisely for any object A P T, there exists a triangle

Ω1
X

�
Ωn

XpAr�1sqrn� 1s� ÝÑ GA ÝÑ A ÝÑ Ω1
X

�
Ωn

XpAr�1sqrn� 1s�r1s (8.2)

where Ω1
X

�
Ωn

XpAr�1sqrn � 1s� P X, and the map GA ÝÑ A is a right pJX X XJq � X-approximation of A.
Moreover the above triangle induces a short exact sequence

0 ÝÑ H
�
Ω1

X

�
Ωn

XpAr�1sqrn� 1s�� ÝÑ HpGAq ÝÑ HpAq ÝÑ 0

and the map HpGAq ÝÑ HpAq is a right Gorenstein-projective approximation of HpAq.
Proof. Consider the triangle arising from the cellular tower of Ar�1s.

Celln�1pAr�1sqr1s ÝÑ A ÝÑ Ωn
XpAr�1sqrn� 1s ÝÑ Celln�1pAr�1sqr2s

Then we know that Ωn
XpAr�1sq lies in X. Since the injective object HpΩn

XpAr�1sqrn � 1sq has projective
dimension at most one, we have a triangle

Ω1
X

�
Ωn

XpAr�1sqrn� 1s� ÝÑ X0
Ωn

X
pAr�1sqrn�1s ÝÑ Ωn

XpAr�1sqrn� 1s ÝÑ Ω1
X

�
Ωn

XpAr�1sqrn� 1s�
where the object Ω1

X

�
Ωn

XpAr�1sqrn � 1s� lies in X. Now form the weak-pull back of the first triangle along

the map X0
Ωn

X
pAr�1sqrn�1s ÝÑ Ωn

XpAr�1sqrn� 1s in the sense of [8]:

Ω1
X

�
Ωn

XpAr�1sqrn� 1s�
²²

Ω1
X

�
Ωn

XpAr�1sqrn� 1s�
²²

Celln�1pAr�1sqr1s // GA
//

²²

X0
Ωn

X
pAr�1sqrn�1s //

²²

Celln�1pAr�1sqr2s

Celln�1pAr�1sqr1s // A //

²²

Ωn
XpAr�1sqrn� 1s //

²²

Celln�1pAr�1sqr2s

Ω1
X

�
Ωn

XpAr�1sqrn� 1s�r1s Ω1
X

�
Ωn

XpAr�1sqrn� 1s�r1s
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Since the object Celln�1pAr�1sqr1s lies clearly in JX X XJ it follows that GA lies in pJX X XJq � X. This
implies, by Lemma 8.4, that the object HpGAq is Gorenstein-projective. Applying the functor H to the above
diagram of triangles and using that the maps HpGAq ÝÑ HpX0

Ωn
X
pAr�1sqrn�1sq ÐÝ HpΩ1

X

�
Ωn

XpAr�1sqrn� 1s�q
are monomorphisms we deduce that we have a short exact sequence 0 ÝÑ H

�
Ω1

X

�
Ωn

XpAr�1sqrn � 1s�� ÝÑ
HpGAq ÝÑ HpAq ÝÑ 0. Since HpΩ1

X

�
Ωn

XpAr�1sqrn � 1s�q is projective in mod-X, it follows that the map
HpGAq ÝÑ HpAq is a right Gorenstein-projective approximation of HpAq. On the other hand let M be
in pJX X XJq � X and let K ÝÑ M ÝÑ X ÝÑ Kr1s be a triangle, where K P JX X XJ and X P X.
Also let M ÝÑ A be a map. The composition K ÝÑ M ÝÑ A ÝÑ Ωn

XpAr�1sqrn � 1s, is zero since
K P XJ � Xr1s� � � ��Xrns and Ωn

XpAr�1sqrn�1s P Xrn�1s. This implies that the composition K ÝÑM ÝÑ
A ÝÑ Ω1

X

�
Ωn

XpAr�1sqrn�1s�r1s is zero and therefore the compositionM ÝÑ A ÝÑ Ω1
X

�
Ωn

XpAr�1sqrn�1s�r1s
factorizes through the map M ÝÑ X. Since X P X and Ω1

X

�
Ωn

XpAr�1sqrn� 1s�r1s lies in Xr1s, it follows that
the composition M ÝÑ A ÝÑ Ω1

X

�
Ωn

XpAr�1sqrn � 1s�r1s is zero and therefore the map M ÝÑ A factorizes

through the map GA ÝÑ A. This shows that GA ÝÑ A is a right
�pJXX XJq � X�-approximation of A, i.e.

pJXX XJq � X is contravariantly finite in T. ¤

Corollary 8.6. Let X be a strong pn � 1q-cluster tilting subcategory of T. Then the right adjoint of the
inclusion Gprojmod-X ÝÑ mod-X is given by:

Ω�1Ω : mod-X ÝÑ Gprojmod-X, Ω�1ΩHpAq � HpGAq
Let A P T and consider the exact sequence 0 ÝÑ H

�
Ω1

X

�
Ωn

XpAr�1sqrn � 1s�� ÝÑ HpGAq ÝÑ HpAq ÝÑ 0
of the above Proposition, where HpGAq ÝÑ HpAq is a right Gorenstein-projective approximation of HpAq.
Also consider the triangle, where the middle map is a left X-approximation of GA:

Celln�1pGArnsqr�ns ÝÑ GA ÝÑ Ωn
XpGArnsq ÝÑ Celln�1pGArnsqr�n� 1s

Forming the Octahedral diagram induced by the composition Ω1
X

�
Ωn

XpAr�1sqrn�1s� ÝÑ GA ÝÑ Ωn
XpGArnsq

we obtain two triangles:

A ÝÑ PA ÝÑ Celln�1pAr�1sqr2s ÝÑ Ar1s (8.3)

Ω1
X

�
Ωn

XpAr�1sqrn� 1s� ÝÑ Ωn
XpGArnsq ÝÑ PA ÝÑ Ω1

X

�
Ωn

XpAr�1sqrn� 1s�r1s (8.4)

Finally set HpGAq :� Im
�
Ωn

XpGArnsq ÝÑ Celln�1pGArnsqr�n� 1s� for some object GA P T.
Proposition 8.7. Let X be a strong pn� 1q-cluster tilting subcategory of T, and let A be an object of T.

(i) pdHpPAq ¤ 1 and the object HpGAq is Gorenstein-projective.
(ii) There is a short exact sequence

0 ÝÑ HpAq ÝÑ HpPAq ÝÑ HpGAq ÝÑ 0

where the map HpAq ÝÑ HpPAq is a left pProj¤1mod-Xq-approximation of HpAq.
Proof. Applying H to the triangle p8.2q we have an exact sequence HpΩ1

X

�
Ωn

XpAr�1sqrn�1s�q ÝÑ HpΩn
XpGArnsqqÝÑ HpPAq ÝÑ 0. However HpΩ1

X

�
Ωn

XpAr�1sqrn � 1s�q ÝÑ HpΩn
XpGArnsqq is a monomorphism since

by construction is the composition of the maps HpΩ1
X

�
Ωn

XpAr�1sqrn � 1s�q ÝÑ HpGAq and HpGAq ÝÑ
HpΩn

XpGArnsq which are monomorphisms. Hence we have short exact sequence 0 ÝÑ HpΩ1
X

�
Ωn

XpAr�1sqrn�
1s�q ÝÑ HpΩn

XpGArnsqq ÝÑ HpPAq ÝÑ 0 and therefore pdHpPAq ¤ 1 since the objects Ωn
XpGArnsq and

Ω1
X

�
Ωn

XpAr�1sqrn � 1s� lie in X. On the other hand applying the functor H to the triangle p8.3q and using
that HpCelln�1pGArnsqr�nsq � 0, since Celln�1pGArnsqr�ns P Xr�ns � � � � �Xr�1s, we have an exact sequence
0 ÝÑ HpAq ÝÑ HpPAq ÝÑ HpGAq ÝÑ 0 and HpGAq is a subobject of HpCelln�1pGArnsqr�n � 1sq. Since
Celln�1pGArnsqr�n� 1s lies in Xr�n� 1s � � � � �Xr�1s �X and H kills the objects of Xr�n� 1s � � � � �Xr�1s,
it follows that HpGAq is a subobject of a projective object and therefore it is Gorenstein-projective. Clearly
then the map HpAq ÝÑ HpPAq is a left Proj¤1 mod-X-approximation of HpAq, since Ext1pM,Nq � 0, for any
Gorenstein-projective object M and any object N with finite projective dimension. ¤

8.2. Representation Dimension. Recall that an additive category is called Krull-Schmidt if any of its
objects is a finite coproduct of indecomposable objects and any indecomposable object has local endomor-
phism ring. A Krull-Schmidt category has finite representation type if there are finitely many indcomposable
objects up to isomorphism. Now let A be an abelian category with enough projectives. We say that A
is of finite Cohen-Macaulay type, finite CM-type for short, if GProjA is a Krull-Schmidt category of finite
represenattion type. In this section we show that if X is a strong pn� 1q-cluster tilting subcategory of T and
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the cluster tilted category mod-X is of finite CM-type, then mod-X is equivalent to the category of finitely
presented modules over a coherent ring of representation dimension ¤ 3 in the sense of Auslander [3].

Lemma 8.8. Let A be a 1-Gorenstein abelian category. If ProjA is covariantly finite and InjA is con-
travariantly finite in A , then the full subcategory

E :� GProjA ` GInjA � add
 
X ` Y P A | X P GProjA , Y P GInjA (

is functorially finite in A and: gl. dimmod-E ¤ 3.

Proof. Since A has enough projectives and enough injectives, the full subcategories ProjA and InjA are
functorially finite in A . Then by [7, Theorem 4.16] the full subcategories GProjA and GInjA are functorially
finite in A . We use throughout that, by Remark 8.2, GProjA � ΩA and GInjA � ΣA .

Let F be in A and consider the following exact sequences in mod-X:

0 ÝÑ F ÝÑ I ÝÑ ΣpF q ÝÑ 0 and 0 ÝÑ ΩI ÝÑ P ÝÑ I ÝÑ 0

where F ÝÑ I is a monomorphism into an injective object I and P ÝÑ I is an epimorphism from a projective
object P . The above exact sequences induce the following exact sequence:

0 ÝÑ ΩI ÝÑ ΩΣF ÝÑ F ÝÑ 0 (8.5)

Since A is 1-Gorenstein, it follows that ΩpIq is projective. Hence applying A pG,�q, where G is Gorenstein-
projective, to (8.5), we have Ext1A pG,ΩIq � 0 and therefore the map ΩΣpF q ÝÑ F ÝÑ 0 is a right pGProjA q-
approximation of F . Since InjA is contravariantly finite in A , there is an exact sequence 0 ÝÑ ΩIpF q ÝÑ
J ÝÑ F , where the map J ÝÑ F is a right pInjA q-approximation of F . Then ΣΩIpF q � ImpJ ÝÑ F q lies
in GInjA � ΣpA q and we claim that the map 0 ÝÑ ΣΩIpF q ÝÑ F is a right GInjA -approximation of F .
Indeed let Z be a Gorenstein-injective object and Z ÝÑ F be a map in A ; then by definition there exists an
exact sequence 0 ÝÑ Z 1 ÝÑ J 1 ÝÑ Z ÝÑ 0, where J 1 is injective and Z 1 is Gorenstein-injective. Then the
composition J 1 ÝÑ Z ÝÑ F factors through J and we have an exact commutative diagram

0 ÝÝÝÝÑ Z 1 ÝÝÝÝÑ J 1 ÝÝÝÝÑ Z ÝÝÝÝÑ 0��� ��� ���
0 ÝÝÝÝÑ ΩIpF q ÝÝÝÝÑ J ÝÝÝÝÑ F

It follows that there exists a unique map Z ÝÑ ΣΩIpF q � ImpJ Ñ F q and then by diagram chasing it is easy
to see that Z ÝÑ F factors through Z ÝÑ ΣΩIpF q, i.e. 0 ÝÑ ΣΩIpF q ÝÑ F is a right GInjA -approximation
of F . Taking the pull-back of 8.5 along the map ΣΩIpF q ÝÑ F we have an exact commutative diagram

0 ÝÝÝÝÑ ΩI ÝÝÝÝÑ G ÝÝÝÝÑ ΣΩIpF q ÝÝÝÝÑ 0��� ��� ���
0 ÝÝÝÝÑ ΩI ÝÝÝÝÑ ΩΣF ÝÝÝÝÑ F ÝÝÝÝÑ 0

(8.6)

where the middle map G ÝÑ ΩΣF is a monomorphism and therefore G is Gorenstein-projective. The above
pull-back diagram induces an exact sequence

0 ÝÑ G ÝÑ ΩΣF ` ΣΩIpF q ÝÑ F ÝÑ 0 (8.7)

where clearly the objects G and ΩΣF ` ΣΩIpF q lie in E . Using the pull-back diagram p8.6q it is easy to
see that the map ΩΣF ` ΣΩIpF q ÝÑ F is a right E -approximation of F . Hence E is contravariantly
finite in A . A dual construction gives that E is covariantly finite in A . In particular mod-E is abelian with
enough projectives and the restricted Yoneda embedding Y : A ÝÑ mod-E , YpF q � Homp�, F q|E induces
an equivalence between E and Projmod-E . Applying Y to p8.6q we have then a projective resolution

0 ÝÑ YpGq ÝÑ YpΩΣF ` ΣΩIpF qq ÝÑ YpF q ÝÑ 0 (8.8)

in mod-E and therefore pdYpF q ¤ 1. Finally let M be an arbitrary object of mod-E and choose a projective
presentation YpW1q ÝÑ YpW0q ÝÑM ÝÑ 0 in mod-E , where the Wi lie in E . If F � KerpW1 Ñ W0q, then
using p8.8q we have a projective resolution

0 ÝÑ YpW3q ÝÑ YpW2q ÝÑ YpW1q ÝÑ YpW0q ÝÑ M ÝÑ 0

where W3 � YpGq for some Gorenstein-projective object G and W2 � Y
�
ΩΣpF q`ΣΩIpF q�. Hence pdM ¤ 3

and therefore gl. dimmod-E ¤ 3. ¤
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Recall that if A is an abelian category, then the representation dimension rep. dimA of A in the sense
Auslander [3] is defined as follows. An object T of A is called generator, resp. cogenerator, if any object of
A is a factor, resp. subobject, of a direct summand of a finite direct sum of copies of T . We call an object
T of A right coherent if the full subcategory addT has weak kernels; dually T is called left coherent if addT
has weak cokernels. For instance T is right, resp. left, coherent, if addT is contravariantly, resp. covariantly,
finite. Finally T is called coherent if T is left and right coherent object. Then

rep. dimA � inf
 
gl. dimmod-EndA pT q | T is a coherent generator-cogenerator of A

(
Theorem 8.9. Let T be a Krull-Schmidt triangulated category and X a strong pn � 1q-cluster tilting sub-
category of T. If mod-X is of finite Cohen-Macauly type, then rep. dimmod-X ¤ 3. More precisely there is
a strong pn � 1q-cluster tilting coherent object T P X such that mod-X � mod-EndTpT q, the ring EndTpT q is
coherent and the representation dimension of mod-EndTpT q is at most 3.

Proof. Since mod-X is of finite Cohen-Macaulay type, clearly X � addT for some pn�1q-cluster tilting object
T P T and then mod-X � mod-EndTpT q. For the same reason GProjmod-X � addZ and GInjmod-X � addW ,
where Z,W P mod-X. Then the object G :� Z `W is a coherent object which is a generator-cogenerator of
mod-X, and then Lemma 8.8 shows that gl. dimmod-Endmod-XpHq ¤ 3. It follows that rep. dimmod-X ¤ 3. ¤

Recall that a finite-dimensional k-algebra Λ over a field k is called of finite CM-type if the full subcategory
GprojΛ of finitely generated Gorenstein-projective Λ-modules is of finite representation type.

Corollary 8.10. Let T be a triangulated category and T a strong pn� 1q-cluster tilting object of T. Assume
that the cluster-tilted algebra EndTpT q is of finite Cohen-Macaulay type. Then the algebra EndTpT q has
representation dimension at most 3.

9. Certain Cluster Tilted Subcategories are Stably Calabi-Yau

We have seen that the category mod-X of coherent functors over a pn � kq-strong pn � 1q-cluster tilting
subcategory X of a triangulated category T is k-Gorenstein, provided that 0 ¤ k ¤ 1 or k ¤ n�1

2 , if
2 ¤ k ¤ n � 1. In this section we show that if the triangulated category T is pn � 1q-Calabi-Yau, then the
triangulated stable category modulo projectives of the Gorenstein-projective objects of mod-X is pn � 2q-
Calabi-Yau in case 0 ¤ k ¤ 1, and under an additional assumption if 2 ¤ k ¤ n�1

2 . This generalizes a basic
result of Keller-Reiten [21] who treated the case n � 1.

Throughout let T be a triangulated category and X a fixed pn� 1q-cluster tilting subcategory of T, n ¥ 1.

9.1. Serre Functors. Assume that the triangulated category T is k-linear with split idempotents over a
field k, all Hom-spaces are finite-dimensional, and admits a Serre functor S. So S : T ÝÑ T is a triangulated
equivalence and there are natural isomorphisms

DTpA,Bq �ÝÑ TpB, SpAqq p�q
where D denotes duality with respect to the base field k.

For any object A P T we consider triangles

X1
A ÝÑ X0

A ÝÑ Cell1pAq ÝÑ X1
Ar1s and XA

1 r�1s ÝÑ Cell1pAq ÝÑ XA
0 ÝÑ XA

1 (9.1)

where the maps X1
A ÝÑ Ω1

XpAq and X0
A ÝÑ A are right X-approximations and the maps A ÝÑ XA

0 and
Σ1

XpAq ÝÑ XA
1 are left X-approximations. Then

Cell1pAq P X � Xr1s and HpCell1pAqq � HpAq, Cell1pAq P Xr�1s � X and HoppAq � HpCell1pAqq
Recall that the transpose TrpF q, in the sense of Auslander-Bridger [4], of an object F in mod-X is defined

as follows. Let HpX1q ÝÑ HpX0q ÝÑ F ÝÑ 0 be a projective presentation of F . Consider the duality
functor dr :� Homp�,Hp?q|Xq : mod-X ÝÑ mod-Xop, defined by drpF q � HompF,Hp?q|Xq : X ÝÑ Ab, where
HompF,Hp?q|XqpXq � HompF,HpXqq. Similarly the duality functor dl : mod-Xop ÝÑ mod-X is defined and
it is well-known that pdr, dlq : mod-X ¿ mod-Xop is an adjoint on the right pair of contravariant functors
inducing a duality between Projmod-X and Projmod-Xop, a duality between GProjmod-X and GProjmod-Xop,
and finally a duality between GProjmod-X and GProjmod-Xop. Now the transpose TrpF q of F is defined by

TrpF q � Coker
�
drHpX0q ÝÑ drHpX1q�. Since drH � Hop, we have an exact sequence

0 ÝÑ drpF q ÝÑ HoppX0q ÝÑ HoppX1q ÝÑ TrpF q ÝÑ 0

In this way one obtains a functor Tr : mod-X ÝÑ mod-Xop which is well-known to be a duality. Now the
duality D with respect to the base field k acts on mod-X by DpF qpXq � DpF pXqq.
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Lemma 9.1. There are isomorphisms:

DTrHpAq � HpSCell1pAqr�1sq, TrDHpAq � HpS�1Cell1pAqr1sq (9.2)

DTrHoppAq � HpS�1Cell1pAqr1sq, TrDHoppAq � HpSCell1pAqr�1sq (9.3)

Proof. For simplicity we set A� � Cell1pAq and A� � Cell1pAq. Applying H and Hop to the triangles
in (9.1) we have exact sequences HpX1

Aq ÝÑ HpX0
Aq ÝÑ HpA�q ÝÑ 0 and HoppXA

1 q ÝÑ HoppXA
0 q ÝÑ

HoppA�q ÝÑ 0. Applying the dual functors Homp�,Hopp?q|Xq : mod-Xop ÝÑ mod-X and Homp�,Hp?q|Xq :
mod-X ÝÑ mod-Xop we then have exact sequences HpXA

0 q ÝÑ HpXA
1 q ÝÑ TrHoppA�q ÝÑ 0 and HoppX0

Aq ÝÑ
HoppX1

Aq ÝÑ TrHpA�q ÝÑ 0. Finally applying the duality functor D and using p�q we have exact sequences

0 ÝÑ DTrHpA�q ÝÑ HpSX1
Aq ÝÑ HpSX0

Aq and 0 ÝÑ DTrHoppA�q ÝÑ HoppS�1XA
1 q ÝÑ HoppS�1XA

0 q
However since S and S�1 are triangulated, we have triangles

SpX0
Ar�1sq ÝÑ SpA�r�1sq ÝÑ SX1

A ÝÑ SX0
A, S�1XA

0 ÝÑ S�1XA
1 ÝÑ S�1pA�r1sq ÝÑ S�1pXA

0 r1sq
Since HpSpX0

Ar�1sqq � TppX, SpX0
Ar�1sqq � DTpX0

Ar�1s,Xq � DTpX0
A,Xr1sq � 0 and HoppS�1pXA

0 r1sqq �
TpS�1pXA

0 r1sq,Xq � TpXA
0 r1s,SXq � DTpX, XA

0 r1sq � 0, we infer that

DTrHpA�q �ÝÑ HSpA�r�1sq and DTrHoppA�q �ÝÑ HopS�1pA�r1sq
Since HpAq � HpA�q and HoppAq � HoppA�q, these reduce the isomorphisms:

DTrHpAq �ÝÑ HSpA�r�1sq and DTrHoppAq �ÝÑ HopS�1pA�r1sq
Similarly we get isomorphisms: DTrHoppAq � HpS�1A�r1sq and TrDHoppAq � HpSA�r�1sq. ¤

To proceed further we need the following.

Lemma 9.2. The cluster tilted category mod-X has Auslander-Reiten sequences. In particular Auslander-
Reiten formula

DHom
�
HpAq,HpBq� �ÝÑ Ext1

�
HpBq,DTrpHpAq� (9.4)

holds for any objects HpAq and HpBq in mod-X. Moreover there are isomorphisms:

Hom
�
HpBq,HpSCell1pAqr�1sq� �ÐÝ DExt1

�
HpAq,HpBq� �ÝÑ Hom

�
HpS�1Cell1pBqr1sq,HpAq�

Proof. Since X is an pn� 1q-cluster tilting subcategory, it follows that X is functorially finite. On the other
hand by using p�q, we have isomorphisms, @X P X:

DHpXq �ÝÑ DTpX, Xq �ÝÑ TpX, SXq �ÝÑ TpS�1X,Xq �ÝÑ HoppS�1Xq,
DHoppXq �ÝÑ DTpX,Xq �ÝÑ TpX, SXq �ÝÑ HpSXq

which show that k-duals of contravariant or covariant representable functors over X are coherent. This
clearly implies, by [5], that mod-X is a dualizing k-variety. In particular has Auslander-Reiten sequences and
Auslander-Reiten formula (9.4) holds. The remaining isomorphisms follow by using Lemma 9.1. ¤

Finally we shall need the following observation.

Lemma 9.3. The Serre functor S : T ÝÑ T induces an equivalence

S : X
�ÝÑ Xrn� 1s

Proof. Consider the triangle

Ωn
XpSpXr�1sqrn� 1s ÝÑ Celln�1pSpXr�1sqq ÝÑ SpXr�1sq ÝÑ Ωn

XpSpXr�1sqrns
Since the functor S is triangulated, we have a triangle

Ωn
XpSpXr�1sqrns ÝÑ Celln�1pSpXr�1sqqr1s ÝÑ SpXq ÝÑ Ωn

XpSpXr�1sqrn� 1s
By Serre duality the middle map corresponds to an element of DTpX,Celln�1pSpXr�1sqqr1sq. The last space
is zero since Celln�1pSpXr�1sqqr1s P Xr1s � Xr2s � � � � � Xrns, see Proposition 4.2. Hence the middle map of
the triangle above is zero and therefore SpXq lies in Xrn � 1s as a direct summand of Ωn

XpSpXr�1sqrn � 1s.
Therefore SpXq � Xrn � 1s. Dually if Xrn � 1s P Xrn � 1s, then for any i with 1 ¤ i ¤ n, we have:
TpS�1pXrn � 1sq,Xrisq � TpXrn � 1s, SpXrisqq � DTpXris, Xrn � 1sq � 0. Hence S�1pXrn � 1sq P JnX � X

and therefore S�1pXrn� 1sq � X and the assertion follows. ¤
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9.2. pn� 1q-Calabi-Yau Categories. From now on we assume that: T is pn� 1q-Calabi-Yau, i.e. there is
an isomorphism of triangulated functors:

Sp?q �ÝÑ p?qrn� 1s
Then we have natural isomorphisms

DHomTpA,Bq �ÝÑ HomTpB,Arn� 1sq (9.5)

Lemma 9.4. Let A be an object in X � Xr1s. Then we have the following

(i) DTrHpAq � HpArnsq.
(ii) If n ¥ 2, then: HpArtsq � 0, 1 ¤ t ¤ n� 1.
(iii) For any HpBq P GProjmod-X, there is a natural isomorphism:

DHom
�
HpAq,HpBq� �ÝÑ Hom

�
Ω1HpBq,HpArnsq�

Proof. (i) Since A P X � Xr1s, we may take A � Cell1pAq and then by Lemma 9.1, we have an isomorphism
DTrpHpAqq � HpArnsq.

(ii) Since n ¥ 2, and A P X�Xr1s, we have Arts P Xrts�Xrt�1s which is contained in XJ � Xr1s�� � ��Xrns,
for 1 ¤ t ¤ n� 1. It follows that HpArtsq � 0, 1 ¤ t ¤ n� 1.

(iii) By Lemma 9.2 we have an isomorphism DHom
�
HpAq,HpBq� � Ext1

�
HpBq,DTrpHpAq�. Hence (i)

gives us an isomorphism DHom
�
HpAq,HpBq� � Ext1

�
HpBq,HpArnsq�. Since HpBq is Gorenstein-projective,

by Remark 8.2 we have an isomorphism Ext1
�
HpBq,HpArnsq� � Hom

�
Ω1HpBq,HpArnsq�. ¤

To proceed we need the following two preliminary results.

Lemma 9.5. Let n ¥ 2, and A be an object in X � Xr1s such that HpAq is Gorenstein-projective. Let

C ÝÑ A ÝÑ B ÝÑ Cr1s
be a triangle in T. If C lies in Xr�ns � Xr�n� 1s � � � � � Xr�1s, then there exists a short exact sequence

0 ÝÑ HpAq ÝÑ HpBq ÝÑ HpCr1sq ÝÑ 0

which remains exact after the application of the functor Homp�,HpXqq, @X P X. Moreover if HpCr1sq is
Gorenstein-projective, then so is HpBq. The converse holds if mod-X is Gorenstein.

Proof. Since HpAq is Gorenstein-projective, there is a monomorphism HpAq ÝÑ HpXq, whereX P X. Consider
the composition HpCq ÝÑ HpAq ÝÑ HpXq. Since A lies in X � Xr1s, the monomorphism HpAq ÝÑ HpXq
is induced by a map A ÝÑ X. The composition C ÝÑ A ÝÑ X is clearly zero, since C lies in Xr�ns �
Xr�n � 1s � � � � � Xr�1s. Therefore the map A ÝÑ X factorizes through HpBq. As a consequence the
composition HpCq ÝÑ HpAq ÝÑ HpXq is zero. Since HpAq ÝÑ HpXq is a monomorphism and HpAr1sq � 0,
since A P X � Xr1s, we infer that the map HpCq ÝÑ HpAq is zero and therefore we have an exact sequence:

0 ÝÑ HpAq ÝÑ HpBq ÝÑ HpCr1sq ÝÑ 0 (9.6)

and in addition, as the above argument shows, any map HpAq ÝÑ HpXq, X P X, factorizes through HpBq.
It follows that the exact sequence (9.6) remains exact after the application of the functor HpXq, @X P X.
If HpCr1sq is Gorenstein-projective, then so is HpBq, since GProjmod-X is well-known to be closed under
extensions. Conversely let mod-X be Gorenstein, say k-Gorenstein, and let HpBq be Gorenstein-projective. It

is well-known, see [7], that GProjmod-X consists of all objects F such that ExtkpF,HpXqq � 0, @X P X, @k ¥ 1.

Applying Homp�,HpXqq, @X P X, to the exact sequence (9.6) we have trivially that ExtkpHpCr1sq,HpXqq � 0,@X P X, @k ¥ 1, so HpCr1sq is Gorenstein-projective. ¤
Lemma 9.6. Let T be an pn � 1q-Calabi-Yau triangulated category over a field k, n ¥ 1, and let X be anpn � 1q-cluster tilting subcategory of T such that the cluster tilted category mod-X is k-Gorenstein, k ¥ 0.
Assume that for any A P X � Xr1s such that HpAq is Gorenstein-projective, there is a natural isomorphism:

Ω�pn�1qHpAq �ÝÑ Ω�kΩkHpArnsq
in GProjmod-X. Then GProjmod-X is pn� 2q-Calabi-Yau.
Proof. Since mod-X is k-Gorenstein, it follows from Remark 8.2 that ΩkHpCq P GProjmod-X, @C P T,
and moreover the functor Ω�kΩk : mod-X ÝÑ GProjmod-X is a right adjoint of the inclusion mod-X ÝÑ
GProjmod-X. Then by Lemma 9.4, we have natural isomorphisms

DHom
�
HpAq,HpBq� �ÝÑ Hom

�
Ω1HpBq,HpArnsq� �ÝÑ Hom

�
Ω1HpBq,Ω�kΩkHpArnsq� �ÝÑ
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�ÝÑ Hom
�
Ω1HpBq,Ω�pn�1qHpAq� �ÝÑ Hom

�
HpBq,Ω�pn�2qHpAq�

for any Gorenstein-projective objects HpBq and HpAq, with A P X�Xr1s. Since any object F � HpCq of mod-X
is isomorphic to an object of the form HpAq, where A P X � Xr1s, namely A � Cell1pCq, the above natural
isomorphism holds for all Gorenstein-projective objects. Hence the functor Ω�pn�2q : GProjmod-X ÝÑ
GProjmod-X serves as a Serre functor in GProjmod-X, i.e. GProjmod-X is pn� 2q-Calabi-Yau. ¤

Now we are ready to state and prove the first main result of this section. Note that the case n � 1 is due
to Keller-Reiten [21].

Theorem 9.7. Let T be a k-linear triangulated category over a field k with finite-dimensional Hom-spaces.
Let X be an pn � 1q-cluster tilting subcategory of T and assume that X is pn � kq-strong, 0 ¤ k ¤ 1, n ¥ 1.
If T is pn� 1q-Calabi-Yau, then the stable triangulated category Gprojmod-X is pn� 2q-Calabi-Yau.

We split the proof in two steps k � 0 and k � 1. In each step we need to treat separately the cases n � 1
and n ¥ 2. Note that under the imposed assumptions, the category mod-X is 1-Gorenstein. More precisely
for k � 0, mod-X is Frobenius, so mod-X � GProjmod-X and GProjmod-X � mod-X. If k � 1 then the
category mod-X is 1-Gorenstein and GProjmod-X � Ωmod-X coincides with the full subcategory of mod-X
consisting of the subobjects of the projective objects.

Lemma 9.8. Let X be an pn� 1q-cluster tilting subcategory of T, n ¥ 1. Assume that X is pn� 1q-strong, if
n ¥ 2. Then @A P X � Xr1s, such that HpAq is Gorenstein-projective, there is an isomorphism in mod-X:

HpAq �ÝÑ Ωn�1HpArnsq
Proof. 1. Assume that n � 1. Then T � X�Xr1s, and X is a 2-cluster tilting subcategory of the 2-Calabi-Yau
category T. By Lemma 8.4, there exists a triangle X1

Ar1sr�1s ÝÑ X0
Ar1sr�1s ÝÑ A ÝÑ X1

Ar1s, where the last

map is a left X-approximation of A, Xi
Ar1s lie in X, and the map X0

Ar1sr�1s ÝÑ A is X-ghost. Hence applying

H to the above triangle and using that TpX,Xr1sq � 0, we have an exact sequence

0 ÝÑ HpAq ÝÑ HpX1
Ar1sq ÝÑ HpX0

Ar1sq ÝÑ HpAr1sq ÝÑ 0

Hence in mod-X we have an isomorphism: HpAq � Ω2HpAr1sq as required.
2. Assume that n ¥ 2 and X is pn� 1q-strong. Consider the triangles

Ωk
XpArnsq ÝÑ Xk�1

Arns ÝÑ Ωk�1
X pArnsq ÝÑ Ωk

XpArnsqr1s pT k
Arnsq

Since by Lemma 9.4, TpX, Arisq � 0, 1 ¤ i ¤ n � 1, applying H to the triangle pT 1
Arnsq, we have exact

sequences
0 ÝÑ HpΩ1

XpArnsqq ÝÑ HpX0
Arnsq ÝÑ HpArnsq ÝÑ 0 (9.7)

HpX0
Arnsr�nsq ÝÑ HpAq ÝÑ HpΩ1

XpArnsqr�n� 1sq ÝÑ 0 (9.8)

and isomorphisms:
HpΩ1

XpArnsqr�ksq � 0, 1 ¤ k ¤ n� 2 (9.9)

By Lemma 9.5, the map HpX0
Arnsr�nsq ÝÑ HpAq is zero and therefore (9.8) induces an isomorphism:

HpAq �ÝÑ HpΩ1
XpArnsqr�n� 1sq (9.10)

Using (9.9) and applying H to the triangle pT 2
Arnsq, we have an exact sequence

0 ÝÑ HpΩ2
XpArnsqq ÝÑ HpX1

Arnsq ÝÑ HpΩ1
XpArnsqq ÝÑ 0

and isomorphisms:
HpΩ2

XpArnsqr�ksq � 0, 1 ¤ k ¤ n� 3

HpΩ1
XpArnsqr�n� 1sq �ÝÑ HpΩ2

XpArnsqr�n� 2sq (9.11)

Similarly applying H to the triangle pT 3
Arnsq, we have an exact sequence

0 ÝÑ HpΩ3
XpArnsqq ÝÑ HpX2

Arnsq ÝÑ HpΩ2
XpArnsqq ÝÑ 0

and isomorphisms:
HpΩ2

XpArnsqr�ksq � 0, 1 ¤ k ¤ n� 4

HpΩ2
XpArnsqr�n� ksq �ÝÑ HpΩ3

XpArnsqr�n� k � 1sq, k � 1, 2 (9.12)

Continuing inductively in this way, and applying H to the triangle pTn�1
Arnsq, we have an exact sequence

0 ÝÑ HpΩn�1
X pArnsqq ÝÑ HpXn�2

Arnsq ÝÑ HpΩn�2
X pArnsqq ÝÑ 0
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and isomorphisms:

HpΩn�2
X pArnsqr�1sq � 0

HpΩn�2
X pArnsqr�ksq �ÝÑ HpΩn�1

X pArnsqr�k � 1sq, 2 ¤ k ¤ n� 1 (9.13)

From (9.10) - (9.13), it follows that we have isomorphosms:

HpΩn�1
X pArnsqr�1sq �ÝÑ HpΩn�2

X pArnsqr�2sq �ÝÑ HpΩn�3
X pArnsqr�3sq �ÝÑ � � �

� � � �ÝÑ HpΩ2
XpArnsqr�n� 2sq �ÝÑ HpΩ1

XpArnsqr�n� 1sq �ÝÑ HpAq (9.14)

On the other hand the short exact sequences 0 ÝÑ HpΩk
XpArnsqq ÝÑ HpXk�1

Arnsq ÝÑ HpΩk�1
X pArnsqq ÝÑ 0,

1 ¤ k ¤ n� 1, shows that in mod-X we have isomorphisms:

ΩkHpArnsq �ÝÑ HpΩk
XpArnsqq, 0 ¤ k ¤ n� 1 (9.15)

Finally applying H to the triangle pTn
Arnsq, we have an exact sequence

0 ÝÑ HpΩn�1
X pArnsqr�1sq ÝÑ HpΩn

XpArnsqq ÝÑ HpXn�1
Arnsq ÝÑ HpΩn�1

X pArnsqq ÝÑ 0

Since Ωn
XpArnsq :� Xn

Arns lies in X, it follows that HpΩn�1
X pArnsqr�1sq � Ω2HpΩn�1

X pArnsqq. Hence we have

an isomorphism in mod-X:

HpΩn�1
X pArnsqr�1sq �ÝÑ Ω2HpΩn�1

X pArnsqq �ÝÑ Ωn�1HpArnsq
Putting things together we have an isomorphism HpAq � Ωn�1HpArnsq in mod-X, as required. ¤

Proposition 9.9. Let X be an n-strong pn� 1q-cluster tilting subcategory of T. If T is pn� 1q-Calabi-Yau,
then mod-X is pn� 2q-Calabi-Yau.
Proof. Since X is n-strong, we have X � Xrn� 1s and therefore mod-X is Frobenius, so all objects of mod-X
are Gorenstein-projective. It follows that mod-X is triangulated.

1. First let n � 1. Then X � Xr2s and T � X�Xr1s. By Lemma 9.8 we have an isomorphism Ω2HpAr1sq �
HpAq. Since any object of mod-X is Gorenstein-projective, this is equivalent to Ω�2HpAq � HpAr1sq. Then
by Lemma 9.6 we infer that mod-X is 3-Calabi-Yau.

2. Now let n ¥ 2. Let A be an object in X � Xr1s. Then by Lemma 9.8, we have an isomorphism
HpAq � Ωn�1HpArnsq or equivalently since mod-X is triangulated, Ω�pn�1qHpAq � HpArnsq. Then by
Lemma 9.6 we infer that mod-X is pn� 2q-Calabi-Yau. ¤

Now we treat the case k � 1. Note that the following result was proved independently by Iyama-
Oppermann, see [17].

Proposition 9.10. Let X be an pn � 1q-strong pn � 1q-cluster tilting subcategory of T, n ¥ 1. If T ispn� 1q-Calabi-Yau, then the stable triangulated category GProjmod-X is pn� 2q-Calabi-Yau.
Proof. We treat separately the cases n � 1, where the pn� 1q-strong condition is vacuous, and n ¥ 2.

1. Assume that n � 1. We have that X is a 2-cluster tilting subcategory of the 2-Calabi-Yau category
T and T � X � Xr1s. Let A be in T such that HpAq is Gorenstein-projective. Then by Lemma 9.8 we know
that Ω2HpAr1sq � HpAq. Since mod-X is 1-Gorenstein, it follows that ΩHpAr1sq is Gorenstein-projective.
Then applying Ω�1 to the last isomorphism we obtain ΩHpAr1sq � Ω�1HpAq and therefore Ω�1ΩHpAr1sq �
Ω�2HpAq. Then by Lemma 9.6 it follows that GProjmod-X is 3-Calabi-Yau.

2. Assume that n ¥ 2. By Lemma 9.8, for any object A P X�Xr1s, such that HpAq is Gorenstein-projective,
there is a natural isomorphism in mod-X:

Ωn�1HpArnsq �ÝÑ HpAq
Since ΩHpArnsq is Gorenstein-projective, the above isomorphism gives:

Ω�nHpAq �ÝÑ Ω1HpArnsq, hence Ω�n�1HpAq �ÝÑ Ω�1Ω1HpArnsq
It follows by Lemma 9.6 that GProjmod-X is pn� 2q-Calabi-Yau. ¤
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9.3. Higher Gorenstein categories. We have seen that if X is an pn � kq-strong pn � 1q-cluster tilting
subcategory of T and n ¥ 2k�1, then the cluster tilted category mod-X is k-Gorenstein. Moreover if 0 ¤ k ¤ 1
and if T is pn� 1q-Calabi-Yau, then the stable triangulated category GProjmod-X is pn� 2q-Calabi-Yau.

In this subsection we prove that an analogous statement holds for 2 ¤ k ¤ n � 1 under an additional
assumption.

Theorem 9.11. Let T be an pn � 1q-Calabi-Yau triangulated category over a field k. Let X be an pn � kq-
strong pn � 1q-cluster tilting subcategory of T, where n ¥ 2k � 1, 0 ¤ k ¤ n � 1. Assume that any object
HpCq, where C P Xr�n� 1s � � � � � Xr�1s, has finite projective or injective dimension.

Then the stable triangulated category GProjmod-X is pn� 2q-Calabi-Yau.
Proof. First note that since by Theorem 7.5, the cluster tilted category mod-X is k-Gorenstein, then by
Remark 8.2, we have that ΩkHpAq lies in GProjmod-X, @A P T. We use throughout that if an object of
mod-X has finite projective dimension, then its projective dimension is at most k.

We shall show first that for any A P X � Xr1s such that HpAq is Gorenstein-projective, there is a natural
isomorphism in the stable category GProjmod-X:

Ω�pn�1qHpAq �ÝÑ Ω�kΩkHpArnsq
For 1 ¤ t ¤ n, we have triangles

Ωt
XpArnsq ÝÑ Xt�1

Arns ÝÑ Ωt�1
X pArnsq ÝÑ Ωt

XpArnsqr1s pT t
Arnsq

where Ωt
XpArnsq P X and Ω0

XpArnsq � Arns. Using that, by Lemma 9.4, TpX, Arisq � 0, 1 ¤ i ¤ n � 1, and
TpX,Xr�isq � 0, 1 ¤ i ¤ n� k, we deduce a short exact sequence:

0 ÝÑ HpΩ1
XpArnsqq ÝÑ HpX0

Arnsq ÝÑ HpArnsq ÝÑ 0

and isomorphisms:
HpΩ1

XpArnsqr�tsq � 0, 1 ¤ t ¤ n� k

Using this and applying H to the triangle pT 2
Arnsq, we have an exact sequence

0 ÝÑ HpΩ2
XpArnsqq ÝÑ HpX1

Arnsq ÝÑ HpΩ1
XpArnsqq ÝÑ 0

and isomorphisms:
HpΩ2

XpArnsqr�ksq � 0, 1 ¤ k ¤ n� k � 1

Continuing in this way, and finally applying H to the triangle pT k�1
Arnsq, we have an exact sequence

0 ÝÑ HpΩk�1
X pArnsqq ÝÑ HpXk�2

Arnsq ÝÑ HpΩk�2
X pArnsqq ÝÑ 0

and an isomorphism:
HpΩk�1

X pArnsqr�1sq � 0

Finally applying H to the triangle pT k
Arnsq, we have an exact sequence

0 ÝÑ HpΩk
XpArnsqq ÝÑ HpXk�1

Arnsq ÝÑ HpΩk�1
X pArnsqq ÝÑ 0

From the above exact sequences we deduce that:

ΩkHpArnsq �ÝÑ HpΩk
XpArnsqq (9.16)

On the other hand from the cellular tower of Arns we have triangles:

Ωt
XpArnsqrt� 1s ÝÑ Cellt�1pArnsq ÝÑ Arns ÝÑ Ωt

XpArnsqrts, 1 ¤ t ¤ n pCt�1
Arnsq

Applying H and using that HpArisq � 0, 1 ¤ i ¤ n�1, and, by Proposition 4.3, HpΩt
XpArnsqrisq � 0, 1 ¤ i ¤ t,

we deduce an exact sequence

H
�
Cellt�1pArnsqr�ns� ÝÑ HpAq ÝÑ H

�
Ωt

XpArnsqr�n� ts� ÝÑ H
�
Cellt�1pArnsqr�n� 1s� ÝÑ 0

Since Cellt�1pArnsqr�ns lies in pX �Xr1s � � � � �Xrt� 1sqr�ns � Xr�ns �Xr�n� 1s � � � � �Xr�n� t� 1s which
is contained in Xr�ns �Xr�n� 1s � � � � �Xr�1s, since t ¤ n, by Lemma 9.5 we deduce short exact sequences

0 ÝÑ HpAq ÝÑ H
�
Ωt

XpArnsqr�n� ts� ÝÑ H
�
Cellt�1pArnsqr�n� 1s� ÝÑ 0 (9.17)

for 2 ¤ t ¤ n. Moreover we infer isomorphisms:

HpΩt
XpArnsqr�n� t� 1sq �ÝÑ HpCellt�1pArnsqr�n� 2sq

HpΩt
XpArnsqr�n� t� 2sq �ÝÑ HpCellt�1pArnsqr�n� 3sq
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...

HpΩt
XpArnsqrt� 2sq �ÝÑ HpCellt�1pArnsqr�1sq (9.18)

Consider the short exact sequence (9.17) for t � n�1. Since Celln�2pArnsqr�n�1s lies in Xr�n�1s�� � �Xr�1s,
it follows that pdHpCelln�2pArnsqr�n� 1sq ¤ k. Then (9.17) gives us an isomorphism in mod-X:

ΩkHpAq �ÝÑ ΩkHpΩn�1
X pArnsqr�1sq (9.19)

From the triangle pTn
Arnsq, we have an exact sequence

0 ÝÑ HpΩn�1
X pArnsqr�1sq ÝÑ HpΩn

XpArnsqq ÝÑ HpXn�1
Arnsq ÝÑ HpΩn�1

X pArnsqq ÝÑ 0

Since Ωn
XpArnsq :� Xn

Arns lies in X, it follows that

HpΩn�1
X pArnsqr�1sq �ÝÑ Ω2HpΩn�1

X pArnsqq (9.20)

Consider the short exact sequence

0 ÝÑ HpΩn�2
X pArnsqr�1sq ÝÑ HpΩn�1

X pArnsqq ÝÑ HpXn�2
Arnsq ÝÑ HpΩn�2

X pArnsqq ÝÑ 0

induced from the triangle pTn�2
Arns. Then we have a short exact sequence

0 ÝÑ HpΩn�2
X pArnsqr�1sq ÝÑ HpΩn�1

X pArnsqq ÝÑ ΩHpΩn�2
X pArnsqq ÝÑ 0 (9.21)

Setting t � n� 2 in (9.18), we have an isomorphism HpΩn�2
X pArnsqr�1sq � HpCelln�3pArnsqr�n� 2sq. Since

Celln�3pArnsqr�n�2s lies in Xr�n�2s�� � ��Xr�1s, it follows that by hypothesis that pdHpΩn�2
X pArnsqr�1sq ¤

k. Hence from (9.21) we get an isomorphism Ωk�1HpΩn�1
X pArnsqq �ÝÑ Ωk�2HpΩn�2

X pArnsqq, which since

Ωk mod-X � GProjmod-X, gives us an isomorphism:

ΩkHpΩn�1
X pArnsqq �ÝÑ Ωk�1HpΩn�2

X pArnsqq (9.22)

Next consider the exact sequence

0 ÝÑ HpΩn�3
X pArnsqr�1sq ÝÑ HpΩn�2

X pArnsqq ÝÑ HpXn�3
Arnsq ÝÑ HpΩn�3

X pArnsqq ÝÑ 0

induced from the triangle pTn�3
Arnsq. Then we have a short exact sequence

0 ÝÑ HpΩn�3
X pArnsqr�1sq ÝÑ HpΩn�2

X pArnsqq ÝÑ ΩHpΩn�3
X pArnsqq ÝÑ 0

Setting t � n� 3 in (9.18), we have an isomorphism HpΩn�3
X pArnsqr�1sq � HpCelln�4pArnsqr�n� 3sq. Since

Celln�4pArnsqr�n�3s lies in Xr�n�2s�� � ��Xr�1s, it follows that by hypothesis that pdHpΩn�2
X pArnsqr�1sq ¤

k. Hence from the above exact sequence we obtain as above an isomorphism:

ΩkHpΩn�2
X pArnsqq �ÝÑ Ωk�1HpΩn�3

X pArnsqq (9.23)

Combining (9.22) and (9.23) we arrive at an isomorphism:

ΩkHpΩn�1
X pArnsqq �ÝÑ Ωk�1HpΩn�2

X pArnsqq �ÝÑ Ωk�2HpΩn�3
X pArnsqq

Continuing in this way we obtain inductively isomorphisms:

ΩkHpΩn�1
X pArnsqq �ÝÑ Ωk�1HpΩn�2

X pArnsqq �ÝÑ Ωk�2HpΩn�3
X pArnsqq �ÝÑ � � �

�ÝÑ Ωn�2HpΩk�1
X pArnsqq �ÝÑ Ωn�1HpΩk

XpArnsqq �ÝÑ Ωn�1ΩkHpArnsq (9.24)

Combining the isomorphisms (9.22)-(9.24) we have isomorphisms:

ΩkHpAq �ÝÑ ΩkHpΩn�1
X pArnsqr�1sq �ÝÑ Ω2ΩkHpΩn�1

X pArnsqq �ÝÑ Ω2Ωn�1ΩkHpArnsq �ÝÑ
Ωn�1ΩkHpArnsq �ÝÑ ΩkΩn�1HpArnsq (9.25)

Since HpAq and Ωn�1HpArnsq are Gorenstein-projective, we infer an isomorphism:

HpAq �ÝÑ Ωn�1HpArnsq
Hence in the stable category GProjmod-X we have isomorphisms:

HpAq �ÝÑ Ω�kΩkHpAq �ÝÑ Ω�kΩkΩn�1HpArnsq �ÝÑ Ωn�1Ω�kΩkHpArnsq
We infer that:

Ω�pn�1qHpAq �ÝÑ Ω�kΩkHpArnsq
as required. Then by Lemma 9.6 we infer that GProjmod-X is pn� 2q-Calabi-Yau. ¤
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Note that Theorem 9.7 is a special case of Theorem 9.11, since X is pn� kq-strong and 0 ¤ k ¤ 1, then as
easily seen HpCq � 0, for any C P Xr�n� 1s � � � � � Xr�1s.

From now and on until the end of this section we fix an pn� 1q-Calabi-Yau triangulated category T over a

field k, for instance T � C
pn�1q
H the pn � 1q-cluster category of a finite-dimensional hereditary k-algebra H.

Let X be an pn� kq-strong pn� 1q-cluster tilting subcategory of T, 0 ¤ k ¤ n� 1, and assume that if k ¥ 2,
then n ¥ 2k � 1 and any object HpCq, where C P Xr�n � 1s � � � � � Xr�1s, has finite projective or injective
dimension.

Corollary 9.12. The triangulated category Gprojmod-X has Auslander-Reiten triangles and the Auslander-
Reiten translation is given by:

τ � Ω�pn�1q : Gprojmod-X
�ÝÑ Gprojmod-X, τHpAq � Ω�pn�1qHpAq � Ω�kΩkHpCell1pAqrnsq

Recall that the triangulated category of singularities, in the sense of Orlov, see [24], associated to a finite-
dimensional k-algebra Λ, is the Verdier quotient Dbpmod-Λq{KbpprojΛq of the bounded derived category of
finite-dimensional Λ-modules by the thick subcategory of perfect complexes.

Corollary 9.13. If X � addT for some object T P T, then the triangulated category of singularities
Dsing

�
EndTpT q� associated to the k-algebra EndTpT q is pn� 2q-Calabi-Yau.

Proof. By Theorem 9.11 the endomorphism algebra EndTpT q is k-Gorenstein. Since T is pn� 1q-Calabi-Yau,
by Theorem 7.5, the stable triangulated category GprojpEndTpT qq of finitely generated Gorenstein-projective
EndTpT q-modules is pn � 2q-Calabi-Yau. Then the assertion follows from the well-known fact that over a
Gorenstein algebra Λ the triangulated category of singularities DsingpΛq of Λ is triangle equivalent to the
stable category GprojΛ of finitely generated Gorenstein-projective modules over Λ. ¤

Corollary 9.14. The stable category mod-GprojpXq of coherent functors over the stable category GprojpXq of
Gorenstein-projective coherent functors over X is a triangulated category which is p3n� 5q-Calabi-Yau.
Proof. By Theorem 9.11, the triangulated category GprojpXq is pn�2q-Calabi-Yau. The category of coherent
functors mod-GprojX over GprojX is Frobenius and therefore its stable category mod-GprojX is triangulated.
The the assertion follows by a result of Keller which says that if a triangulated category C is d-Calabi-Yau,
then the stable category mod-C of coherent functors over C is p3d� 1q-Calabi-Yau. ¤

Let Λ be a finite-dimensional k-algebra over a field k and assume that Λ is of finite CM-type. Let G be an
additive generator of GprojΛ, i.e. GprojΛ � addG. The endomorphism algebra EndΛpGq of G is called the
Auslander-Cohen-Macaulay algebra of Λ, and its stable endomorphism version EndΛpGq :� HomΛpG,Gq, is
called the stable Auslander-Cohen-Macaulay algebra of Λ. Note that EndΛpGq is self-injective, see [10]. Now
as a consequence of Corollary 9.14 we have the following.

Corollary 9.15. If the cluster-tilted algebra EndTpT q is of finite Cohen-Macaulay type and G is an additive
generator of Gproj EndTpT q, then the stable module category mod-EndΛpGq is p3n� 5q-Calabi-Yau.
Remark 9.16. In this section we considered (pn � kq-strong) pn � 1q-cluster tilting subcategories X in
triangulated categories T which are assumed to be d-Calabi-Yau, for d � n � 1. By Serre duality we have
DTpX,Xq � TpX,Xrdsq. If 0   d   n � 1, it follows that DTpX,Xq � 0 and therefore X � 0. If d � n � k,
where 2 ¤ k ¤ n � 1, and X is pn � kq-strong with n ¥ 2k � 1, then we know by Corollary 7.4 that
Xrn� ks � Xrk� 1s �Xrks � � � � �Xr2k� 1s. Since 2k� 1 ¤ n, this easily implies that TpX,Xrn� ksq � 0 and
then again X � 0. Therefore a d-Calabi-Yau triangulated category T may contain a non-trivial pn�1q-cluster
tilting subcategory, only if d ¥ n � 1, and may contain a non-trivial pn � kq-strong pn � 1q-cluster tilting
subcategories, only if d R t1, 2, � � � , n, n� 2, � � � , 2nu.

10. Global Dimension of Non-Stable Cluster Tilting Subcategories

In this section we are interested in the non-stable versions of the results of the previous sections and
in particular we are concerned with the estimation of the global dimension of the category of coherent
functors over a cluster-tilting subcategory of an abelian category induced by a cluster-tilting subcategory of
its Gorenstein-projectives.

Let A be an abelian category and M � A a full subcategory. In analogy with the triangulated case define

MK
n �  

A P A | ExtkpM, Aq � 0, 1 ¤ k ¤ n
(

and K
nM �  

A P A | ExtkpA,Mq � 0, 1 ¤ k ¤ n
(

Then M is called n-rigid if M �MK
n or equivalently M � K

nM.
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Lemma 10.1. Let A be an abelian category with enough projectives. Then for any object A P A with finite
projective dimension we have A � 0 if and only if ExtkpA,P q � 0, @P P ProjA , 0 ¤ k ¤ pdA.

Proof. Let pdA � n and let 0 ÝÑ Pn ÝÑ Pn�1 ÝÑ � � � ÝÑ P 1 ÝÑ P 0 ÝÑ A ÝÑ 0 be a projective
resolution of A. Then 0 � ExtnpA,Pnq � Ext1pΩn�1A,Pnq, so the sequence 0 ÝÑ Pn ÝÑ Pn�1 ÝÑ
Ωn�1A ÝÑ 0 splits and therefore Ωn�1A is projective. Then Ext1pΩn�2A,Ωn�1Aq � Extn�1pA,Ωn�1Aq � 0,
so 0 ÝÑ Ωn�1A ÝÑ Pn�2 ÝÑ Ωn�2A ÝÑ 0 splits and therefore Ωn�2A is projective. Continuing in this way
we see that Ω1A is projective. Then 0 � Ext1pA,Ω1Aq � 0, so the sequence 0 ÝÑ Ω1A ÝÑ P 0 ÝÑ A ÝÑ 0
splits and therefore A is projective. Then A � 0 since A pA,Aq � 0. ¤

From now on, let A be an abelian category with enough projectives and assume that M is a contravariantly
finite subcategory of A such that ProjA �M.

Since M is contravariantly finite in A , the category mod-M is abelian. We consider the, fully faithful since
ProjA �M, functor

H : A ÝÑ mod-M, HpAq � A p�, Aq|M
ThenH admits an exact left adjoint which is given by the restriction functor R : mod-M ÝÑ mod-ProjA � A ,
induced by the inclusion ProjA � M. Clearly KerR consists of all coherent functors F : Mop ÝÑ Ab
which admit a projective presentation HpM1q ÝÑ HpM0q ÝÑ F ÝÑ 0 where the map M1 ÝÑ M0 is an
epimorphism in A . Further KerR coincides with the full subcategory of mod-M consisting of all coherent
functors over M vanishing on the projectives and is equivalent to the category mod-M of coherent functors
over the stable category Mop ÝÑ Ab and is Hence we have a short exact sequence of abelian categories

0 ÝÑ mod-M ÝÑ mod-M ÝÑ A ÝÑ 0 (10.1)

Let F P mod-M, and fix throughout a projective presentation HpM1q ÝÑ HpM0q ÝÑ F ÝÑ 0 of F . Then
we have an exact sequence

0 ÝÑ HpAF q ÝÑ HpM1q ÝÑ HpM0q ÝÑ F ÝÑ 0 (10.2)

where AF � KerpM1 ÝÑM0q and then ΩpF q � ImpHpM1q ÝÑ HpM0qq and HpAF q � Ω2pF q.
Let A P A . Then there exists a long exact sequence, called an M-resolution of A,

� � � ÝÑMn
A ÝÑMn�1

A ÝÑ � � � ÝÑM1
A ÝÑM0

A ÝÑ A ÝÑ 0 (10.3)

such that its image under H is a projective resolution of HpAq. This is defined as the Yoneda composition
of short exact sequences 0 ÝÑ Ki�1

A ÝÑ M i
A ÝÑ Ki

A ÝÑ 0 constructed inductively, where each map
M i

A ÝÑ Ki
A is a right M-approximation of Ki, @i ¥ 0, and K0

A � A. Note that the right M-approximations
are epics since ProjA �M. It follows that projective resolutions of F P mod-M are of the form

� � � ÝÑ HpMn
AF
q ÝÑ HpMn�1

AF
q ÝÑ � � � ÝÑ HpM0

AF
q ÝÑ HpM1q ÝÑ HpM0q ÝÑ F ÝÑ 0 (10.4)

where HpM1q ÝÑ HpM0q ÝÑ F ÝÑ 0 and AF � KerpM1 ÝÑM0q.
Lemma 10.2. (i) For any object F P mod-M the following are equivalent:

(a) F P mod-M

(b) ExtkpF,HpAqq � 0, 0 ¤ k ¤ 1, @A P A .
If F P mod-M and M �MK

n , then there are isomorphisms:

F � Ext1p�, AF q|M � Ext2p�,K1
AF
q|M � � � � � Extn�1p�,Kn�2

AF
q|M � Extnp�,Kn�1

AF
q|M

(ii) For any object B P A , and any n ¥ 1, the following are equivalent:
(a) B PMJ

n .
(b) For any A P A , there are isomorphisms:

ExtkpA,Bq �ÝÑ ExtkpHpAq,HpBqq, 1 ¤ k ¤ n

(iii) The following are equivalent:
(a) M �MK

n .
(b) For any F P mod-M � mod-M and any X PM, we have:

ExtkpF,HpXqq � 0, 0 ¤ k ¤ n� 1
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Proof. (i) (b) ñ (a) Since F lies in mod-M, the map M1 ÝÑ M0 in (10.2) is epic and we have an ex-
act sequence 0 ÝÑ AF ÝÑ M1 ÝÑ M0 ÝÑ 0 which, for any B P A , induces a long exact sequence
0 ÝÑ A pM0, Bq ÝÑ A pM1, Bq ÝÑ A pA,Bq ÝÑ Ext1pM0, Bq ÝÑ � � � . Since H is fully faithful, the
monomorphism A pM0, Bq ÝÑ A pM1, Bq is isomorphic to the map pHpM0q,HpBqq ÝÑ pHpM1q,HpBqq
whose kernel is isomorphic to pF,HpBqq. We infer that pF,HpBqq � 0. This implies that we have an exact se-
quence 0 ÝÑ pHpM0q,HpBqq ÝÑ pΩpF q,HpBqq ÝÑ Ext1pF,HpBqq ÝÑ 0. On the other hand we have a long
exact sequence 0 ÝÑ pΩpF q,HpBqq ÝÑ pHpM1q,HpBqq ÝÑ pHpAq,HpBqq ÝÑ Ext1pF,HpBqq ÝÑ 0. Since H
is fully faithful, the map A pM1, Bq ÝÑ A pA,Bq is isomorphic to the map pHpM1q,HpBqq ÝÑ pHpAq,HpBqq.
By diagram chasing this implies that the map pHpM0q,HpBqq ÝÑ pΩpF q,HpBqq is an isomorphism. Hence
Ext1pF,HpBqq � 0 as required.

(a) ñ (b) It suffices to show that the map M1 ÝÑ M0 in (10.2) is epic. Let C � CokerpM1 ÝÑ M0q.
Then HpM0q ÝÑ HpCq factorizes through F . Since by hypothesis pF,HpBqq � 0, @B P A , it follows that
the map HpM0q ÝÑ HpCq, or equivalently the map M0 ÝÑ C is zero. Hence C � 0.

Assume now that M �MK
n . Then the map M1 ÝÑM0 inducing the exact sequence (10.2) is an epimor-

phism, so we have a short exact sequence 0 ÝÑ AF ÝÑM1 ÝÑM0 ÝÑ 0 in A . Since Ext1p�,M1q|M � 0, it
follows that F � Ext1p�, AF q|M. Now consider an M-resolution � � � ÝÑM1

AF
ÝÑM0

AF
ÝÑ AF ÝÑ 0 which

is build from short exact sequences 0 ÝÑ Ki
AF

ÝÑ M i�1
AF

ÝÑ Ki�1
AF

ÝÑ 0, where the last map is a right

M-approximation. Using that M �MK
n , as above we have isomorphisms Ext1p�, AF q|M � Ext2p�,K1

AF
q|M �

� � � � Extnp�,Kn�2
AF

q|M � Extnp�,Kn�1
AF

q|M and the assertion follows.

(ii) (b)ñ (a) Setting A � X PM, and using that HpXq is projective in mod-M, we infer that ExtkpX,Bq �
0, 1 ¤ k ¤ n. Hence B lies in MK

n .
(a) ñ (b) First let n � 1. Consider the short exact sequence 0 ÝÑ K1 ÝÑ M0 ÝÑ A ÝÑ 0. Then we

have an exact sequence 0 ÝÑ HpK1q ÝÑ HpM0q ÝÑ HpAq ÝÑ 0. Using that Ext1pM0, Bq � 0, we then
have an exact sequence 0 ÝÑ A pA,Bq ÝÑ A pM0, Bq ÝÑ A pK1, Bq ÝÑ Ext1pA,Bq ÝÑ 0. Since HpM0q is
projective, we also have an exact sequence 0 ÝÑ pHpAq,HpBqq ÝÑ pHpM0q,HpBqq ÝÑ pHpK1q,HpBqq ÝÑ
Ext1pHpAq,HpBqq ÝÑ 0. Since the left exact functor H is fully faithful, the sequences 0 ÝÑ A pA,Bq ÝÑ
A pM0, Bq ÝÑ A pK1, Bq and 0 ÝÑ pHpAq,HpBqq ÝÑ pHpM0q,HpBqq ÝÑ pHpK1q,HpBqq are isomorphic.
It follows that there is an isomorphism Ext1pA,Bq � Ext1pHpAq,HpBqq. Applying A p�, Bq to the short exact

sequences 0 ÝÑ Ki ÝÑM i�1 ÝÑ Ki�1 ÝÑ 0, 1 ¤ i ¤ n�1, and using ExtkpM,Mq � 0, 1 ¤ k ¤ n, it is easy
to see by dimension shift that we have isomorphisms: ExtnpA,Bq � Extn�1pK1, Bq � � � � � Ext1pKn�1, Bq.
Then considering the short exact sequence 0 ÝÑ Kn ÝÑ Mn�1 ÝÑ Kn�1 ÝÑ 0, we see, as in the case
n � 1, that we have an isomorphism ExtnpA,Bq � Ext1pKn�1, Bq � Ext1pHpKn�1q,HpBqq. Since clearly
HpKn�1q � Ωn�1HpAq, we infer that we have an isomorphism ExtnpA,Bq � Ext1pHpAq,HpBqq and the
assertion follows by induction.

(iii) (b) ñ (a) Let X P M and consider the functor p�, Xq : Mop ÝÑ Ab, M 1 ÞÝÑ MpM 1, Xq. Ifp:q : 0 ÝÑ ΩpXq ÝÑ PX ÝÑ X ÝÑ 0 is an exact sequence, where PX is projective, then it is easy to see
that we have an exact sequence HpPXq ÝÑ HpXq ÝÑ p�, Xq ÝÑ 0, so p�, Xq lies in mod-M � mod-M, and
the exact sequence (10.2) for F � p�, Xq takes the form

0 ÝÑ HpΩpXqq ÝÑ HpPXq ÝÑ HpXq ÝÑ p�, Xq ÝÑ 0

Let G � ImpHpPXq ÝÑ HpXqq. Clearly then Ext2pp�, Xq,HpXqq � Ext1pG,HpMq � CokerrA pPX ,Mq ÝÑ
A pΩpXq,Mqs � Ext1pX,Mq. It follows by hypothesis that Ext1pX,Mq � 0. Next for 2 ¤ k ¤ n� 1 we have

0 � Extk�1pp�, Xq,HpMqq � Extk�1pHpΩpXqq,HpMqq. Since Ext1pX,Mq � 0 and X is arbitrary, it follows
from (ii) that for any object A P M we have an isomorphism Ext1pA,Mq � Ext1pHpAq,HpMqq, in particular
Ext1pΩpXq,Mq � Ext1pHpΩpXqq,HpMqq. Since the last space is zero, we have Ext1pΩpXq,Mq � Ext2pX,Mq �
0. It follows that Ext2pM,Mq � 0 and thereforeM �MK

2 . Then by (ii) we have an isomorphism Ext3pX,Mq �
Ext2pΩpXq,Mq � Ext2pHpΩpXqq,HpMqq. Since the last space is zero we infer that Ext3pX,Mq � 0 and
therefore M �MK

3 . Continuing in this way we have finally that M �MK
n as required.

(a) ñ (b) From (10.2) we see that Extk�2pF,HpXq � ExtkpHpAF q,HpXqq, @k ¥ 1. Since M � MK
n , by

(ii) we infer isomorphisms Extk�2pF,HpXqq � ExtkpAF , Xq, 1 ¤ k ¤ n. Now since F P mod-M, we have
a short exact sequence 0 ÝÑ AF ÝÑ M1 ÝÑ M0 ÝÑ 0. Applying A p�, Xq, with X P M, the induced

long exact sequence gives ExtkpAF , Xq � 0, 1 ¤ k ¤ n � 1. We infer that Extk�2pF,HpXqq � ExtkpAF , Xq,
1 ¤ k ¤ n � 1. Hence using (i) we have ExtkpF,HpXqq � 0, 0 ¤ k ¤ 1 and 3 ¤ k ¤ n � 1. Finally
applying HpXq to the short exact sequence 0 ÝÑ HpAF q ÝÑ HpM1q ÝÑ ΩpF q ÝÑ 0 we have an exact
sequence pHpM1q,HpXqq ÝÑ pHpAq,HpXqq ÝÑ Ext2pF,HpXq ÝÑ 0. Since the map pHpM1q,HpXqq ÝÑ
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pHpAq,HpXqq is isomorphic to the map pM1, Xq ÝÑ pA,Xq which is an epimorphism since Ext1pM0, Xq � 0,

we infer that Ext2pF,HpXqq � 0. Hence ExtkpF,HpXqq � 0, 0 ¤ k ¤ n� 1, as required. ¤

Proposition 10.3. If ProjA $M �MK
n , then gl. dimmod-M ¥ n�2. Moreover if MK

n �M, then KnM �M

and gl. dimmod-M � n� 2.

Proof. Since M � ProjA , we have mod-M � 0 so there exists 0 � F P mod-M. If gl. dimmod-M ¤ n � 1,
then by Lemma 1.2(iii) we have ExtkpF,HpXqq � 0, 0 ¤ k ¤ n � 1, and then by Lemma 10.1 it follows
that F � 0. This contradiction shows that gl. dimmod-M ¥ n � 2. Now assume that MK

n � M. To show
that gl. dimmod-M � n � 2, it suffices to show that gl. dimmod-M ¤ n � 2. By using the exact sequence
(10.2), this holds if pdHpAq ¤ n, @A P A . Since the exact sequence (10.3) becomes a projective resolution
of HpAq after applying H, it suffices to show that HpKnq is projective, or equivalently that Kn P M. Since
MK

n � M, it suffices to show that Kn P MK
n . Consider the extensions 0 ÝÑ Ki ÝÑ M i�1 ÝÑ Ki�1 ÝÑ 0,

where each map M i�1 ÝÑ Ki�1 is a right M-approximation of Ki�1 for 0 ¤ i ¤ n and K0 :� A. Since
ExtkpM,Mq � 0, 1 ¤ k ¤ n, we have clearly Ext1pM,Kiq � 0, 1 ¤ i ¤ n. In particular Ext1pM,Knq � 0 and
we have an isomorphism Ext2pM,Knq � Ext1pM,Kn�1q � 0, hence Kn P MK

2 . Continuing in this way we
have finally isomorphisms ExtnpM,Knq � Extn�1pM,Kn�1q � � � � � Ext1pM,K1q � 0. Hence Kn PMK

n �M

and therefore pdHpAq ¤ n. We conclude that gl. dimmod-M � n� 2.
Now let A P K

nM. By applying A p�,Mq to the extension 0 ÝÑ K1 ÝÑ M0 ÝÑ A ÝÑ 0, we have

ExtipK1,Mq � 0, 1 ¤ i ¤ n � 1. Using this and applying A p�,Mq to the extension 0 ÝÑ K2 ÝÑ M1 ÝÑ
K1 ÝÑ 0, we have ExtipK2,Mq � 0, 1 ¤ i ¤ n�2. Continuing in this way we finally have Ext1pKn�1,Mq � 0.
Since pdHpAq ¤ n, we have Kn P M and therefore the extension 0 ÝÑ Kn ÝÑ M1 ÝÑ Kn�1 ÝÑ 0 splits,
hence Kn�1 P M. Since Ext1pKn�2,Mq � 0, the extension 0 ÝÑ Kn�1 ÝÑ M1 ÝÑ Kn�2 ÝÑ 0 splits and
thereforeKn�2 PM. Continuing in this way we see the objectsKi lie inM and therefore since Ext1pA,Mq � 0,
we infer that the extension that the extension 0 ÝÑ K1 ÝÑM0 ÝÑ A ÝÑ 0 splits. Then A PM as a direct
summand of M0. We conclude that A PM, i.e. KnM �M. ¤

Corollary 10.4. Let A be an abelian category with enough projectives and enough injectives. Let M be a
functorially finite subcategory of A . Then the following are equivalent.

(i) ProjA $M and MK
n �M.

(ii) InjA $M and KnM �M.
(iii) M is n-rigid , ProjA $M or InjA $M and gl. dimmod-M � n� 2.

If piq holds, then: M � GProjA if and only if A is Frobenius if and only if M � GInjA . If this is the case,
A is Krull-Schmidt and M is of finite representation type, then:

rep. dimA ¤ n� 2

Proof. (i) ñ (ii), (iii) By Proposition 10.3 we have gl. dimmod-M � n � 2, KnM � M and InjA � M. If
InjA � M, then clearly A � M, hence A � ProjA � M since then A is semisimple. Hence InjA � M.
The implication (ii) ñ (i) follows by duality and is left to the reader.

(iii) ñ (ii) Let A P K
nM. Since gl. dimmod-M � n � 2, it follows that pdHpAq ¤ n and therefore we

have an M-resolution 0 ÝÑ Mn
A ÝÑ Mn�1

A ÝÑ � � � ÝÑ M1
A ÝÑ M0

A ÝÑ A ÝÑ 0 of A of length ¤ n.
Applying to the extension 0 ÝÑ K1

A ÝÑ M0 ÝÑ A ÝÑ 0 the functor A p�,Mq, we see that K1
A P Kn�1M

and then by induction Kn�i
A P K

i M, 1 ¤ i ¤ n � 1. In particular since Kn�1
A P K

1M, the extension

0 ÝÑMn
A ÝÑMn�1

A ÝÑ Kn�1
A ÝÑ 0 splits and therefore Kn�1

A PM. Since Kn�2
A P K2 M, it follows that the

extension 0 ÝÑ Kn�1
A ÝÑMn�2

A ÝÑ Kn�2
A ÝÑ 0 splits and therefore Kn�2

A PM. Continuing in this way we
see that the extension 0 ÝÑ K1

A ÝÑM0
A ÝÑ A ÝÑ 0 splits and therefore A PM. We infer that KnM �M.

Assume now that one of the equivalent conditions (i)-(iii) hold. If A is Frobenius, then A � GProjA and
then M � GProjA . Conversely assume that M � GProjA . Since any object of A admits an M-resolution of
lenght ¤ n, it follows that A is Gorenstein and G-dimA ¤ n. Since M contains the injectives, it follows that
any injective object is Gorenstein-projective. Since spliA   8 it follows that any injective object has finite
projective dimension and therefore any injective object is projective since it is Gorenstein-projective. Now if
P is a projective object, then let p:q : 0 ÝÑ P ÝÑ I ÝÑ A ÝÑ 0 be exact, where I is injective. Applying
A pM,�q, we have directly that A P MK

n�1 and there is an isomorphism ExtnpM, Aq � Extn�1pM, P q.
However since silpA � G-dimA ¤ n, we infer that idP ¤ n, so Extn�1pM, P q � 0. Hence ExtnpM, Aq � 0
and therefore A P MK

n � M. Clearly then the extension p:q splits, so P is injective as a direct summand of
I. Hence A is Frobenius. If moreover A is Krull-Schmidt and M � addM , then addM is functorially finite
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in A and M contains as a direct summand a projective generator and an injective cogenerator of A . Since
mod-EndA pMq � mod-M, it follows that gl. dimmod-EndA pMq � n�2 and therefore rep. dimA ¤ n�2. ¤

From now on we assume that the abelian category A has enough projectives. We consider the stable
category GProjA of Gorenstein-projective objects of A modulo projectives as a triangulated category with

suspension functor Ω�1. For any full subcategory X of GProjA , we denote by M � π�1X the pre-image of
X under the projection functor π : GProjA ÝÑ GProjA . Note that ProjA �M � GProjA .

Lemma 10.5. (i) X is contravariantly finite in GProjA if and only if M is contravariantly finite in
GProjA .

(ii) If ProjA is covariantly finite in A , then X is covariantly finite in GProjA if and only if M is
covariantly finite in GProjA .

(iii) XJn � X if and only if MK
n X GProjA �M.

(iv) If A is Gorenstein, then:
(a) X is contravariantly finite in GProjA if and only if M is contravariantly finite in A .
(b) If If ProjA is covariantly finite in A , then X is covariantly finite in GProjA if and only if M

is covariantly finite in A .

Proof. (i) First let X be contravariantly finite in GProjA and let G P GProjA . Let f
G

: XG ÝÑ G be a
right X-approximation of G. Let MG in M be such that MG � XG. Then we have a map fG : MG ÝÑ G
which may chosen to be an epimorphism since M contains the projectives. If α : M 1 ÝÑ G is a map, where
M 1 PM, then we have a factorization α � ρ � f

G
for some map ρ : M 1 ÝÑ XG. Hence we have factorization

α � ρ � f � κ � ε, where κ : M 1 ÝÑ P and ε : P ÝÑ G and P is projective. Since fG is an epimorphism,
there exists a map λ : P ÝÑMG such that λ � fG � ε. Then α � pρ� κ � λq � fG, i.e. the map f

G
is a right

M-approximation. Conversely if M is contravariantly finite and f : MG ÝÑ G is a right M-approximation of
G P GProjA , then clearly the map f

G
: MG ÝÑ G is a right X-approximation of G.

(ii) Clearly contravariant finiteness of M in GProjA implies contravariant finiteness of X in GProjA .

Conversely let X be contravariantly finite in GProjA and let G P GProjA . Let fG : G ÝÑ XG be a

left X-approximation of G. Consider a map fG
1 : G ÝÑ M1, where fG

1
� fG and M1 � MG. Since G

is Gorenstein-projective, there exists a short exact sequence 0 ÝÑ G ÝÑ PG ÝÑ G1 ÝÑ 0, where G1 is
Gorenstein-projective. Then the map µ : G ÝÑ PG is clearly a left projective approximation of G. It is easy
to see that the map fG :� pfG

1 , µq : G ÝÑM1 ` PG is a left M-approximation of G.
(iii) By Remark 8.2 we have isomorphisms, @G,G1, G2 P GProjA , @A P A , @k ¥ 1:

ExtkpG,Aq �ÝÑ HompΩkG,Aq and ExtkpG1, G2q �ÝÑ HompG1,Ω
�kG2q

It follows directly that: XJn � X if and only if MK
n X GProjA �M.

(iv) Part (a) follows from (iii) since if A is Gorenstein, then GProjA is contravariantly finite in A and (b)
follows from (iii) since if ProjA is covariantly finite in A and A is Gorenstein, then GProjA is covariantly
finite in A , see [7]. ¤

Let A be an abelian category with enough projectives, resp. injectives. Then A is called (projectively),
resp. (injectively) Gorenstein if there exists n ¥ 0, such that any object of A admits a exact resolution of
length ¤ n consisting of Gorenstein-projective, resp. Gorenstein-injective, objects. The minimum such n is
called the Gorenstein dimension of A , denoted by G-dimA , and coincides with the Gorenstein dimension as
defined in Section 7, if A has enough projectives and enough injectives, see [12].

Let U, V be full subcategories of A . Then we define U � V to be the full subcategory

U � V � addtA P A | D an exact sequence : 0 ÝÑ U ÝÑ A ÝÑ V ÝÑ 0, where U P U and V P V(
Inductively we define U1 � U2 � � � � � Un, @n ¥ 1, for full subcategories Ui of A . Clearly the operation � is
associative and clearly U1 �U2 � � � � �Un coincides with the full subcategory FiltpU1, � � � ,Unq of A consisting
of direct summands of objects A which admit a finite filtration

0 � A0 � A1 � A2 � � � � � An�1 � An � A

such that Ak{Ak�1 P Uk, 1 ¤ k ¤ n. Hence: FiltpU1,U2, � � � ,Unq � U1 � U2 � � � � � Un.
If M is contained in GProjA , then we denote by Ω�1M the full subcategory of GProjA consisting of all

direct summands of objects A for which there exists an exact sequence 0 ÝÑ M ÝÑ P ÝÑ A ÝÑ 0, where
M PM and P is projective. Then Ω�kM is defined inductively for k ¥ 2.

Now we are ready to prove the main result of this section.
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Theorem 10.6. Let A be an abelian category with enough projectives. Let X be a full subcategory of GProjA

and set M � π�1X. Then the following are equivalent.

(i) A is Gorenstein and X is an pn� 1q-cluster tilting subcategory of GProjA .

(ii) M is contravariantly finite in A and MK
n X GProjA �M and gl. dimmod-M   8.

If piq holds and X � 0, then K
nMX GProjA �M, we have an equality

A �M � Ω�1M � � � � � Ω�nM � Proj¤dA (10.5)

where G-dimA � d, and gl. dimmod-M is bounded as follows:

n� 2 ¤ gl. dimmod-M ¤ max
 
n,G-dimA

(� 3 (10.6)

Moreover pdmod-M F � n� 2, @F P mod-X, F � 0, and:

paq If G-dimA   n, then: gl. dimmod-M � n� 2.pbq If G-dimA � n, then: gl. dimmod-M P tn� 2, n� 3u.pcq If G-dimA ¡ n, then: n� 2 ¤ gl. dimmod-M ¤ G-dimA � 3.

Proof. (ii) ñ (i) Contravariant finiteness of M in A implies that M has weak kernels, so mod-M is abelian.
Assume that gl. dimmod-M � t   8. Then pdHpAq ¤ t and sinceM contains the projectives, this implies that
any object A in A admits a finite M-resolution of length ¤ t. Since M consists of Gorenstein-projectives, it
follows that the Gorenstein dimension of A is at most t, hence A is Gorenstein by [12]. SinceMK

nXGProjA �
M, by Lemma 10.5 we have XJn � X, so X is an pn� 1q-cluster tilting subcategory of GProjA .

(i) ñ (ii) Since X is pn � 1q-cluster tilting and A is Gorenstein, it follows from Lemma 10.5 that M is
contravariantly finite in A and therefore M has weak kernels. Then mod-M is abelian. We use throughout
the restricted Yoneda functor

H : A ÝÑ mod-M, HpAq � A p�, Aq|M
Since by Lemma 10.5 we have MK

n X GProjA � M, it suffices to show that gl. dimmod-M   8. We show
first that pdHpGq ¤ n, @G P GProjA . Since X � M is an pn � 1q-cluster tilting subcategory of GProjA ,
it follows by Theorem 6.3 that GProjA � X � Ω�1X � � � � � Ω�nX. We show by induction on n that for any
Gorenstein-projective object G there exists an exact resolution

0 ÝÑMn ÝÑMn�1 ÝÑ � � � ÝÑM1 ÝÑM0 ÝÑ G ÝÑ 0 (10.7)

of G by objects from M. If n � 1, then GProjA � X � Ω�1X, hence there exists a triangle X1 ÝÑ X0 ÝÑ
G ÝÑ Ω�1X1. By the construction of triangles in GProjA , the above triangle is induced by a short exact

sequence 0 ÝÑ M1 ÝÑ M0 ÝÑ G ÝÑ 0, where M1 � X1 and M0 � X0, so the M i lie in M. If n � 2,
then GProjA � X � Ω�1X � Ω�2X, and therefore there exists a triangle X0 ÝÑ G ÝÑ G1 ÝÑ Ω�1X0,

where X0 lies in X and G1 lies in Ω�1X � Ω�2X. Then as before, there exists a short exact sequence
0 ÝÑ A1 ÝÑM0 ÝÑ G ÝÑ 0, where A1 � ΩG1 and M0 � X0. Since ΩG1 lies in X � Ω�1X, it follows that
there exists a short exact sequence 0 ÝÑ M2 ÝÑ M1 ÝÑ A1 ÝÑ 0, where Xi � M i. We infer that there
exists a short exact sequence 0 ÝÑM2 ÝÑM1 ÝÑM0 ÝÑ G ÝÑ 0, where the M i lie in M. Continuing by
induction we have the short exact sequence (10.7). Applying H to the exact resolution (10.7) and using that
M is n-rigid, we infer that

0 ÝÑ HpMnq ÝÑ HpMn�1q ÝÑ � � � ÝÑ HpM1q ÝÑ HpM0q ÝÑ HpGq ÝÑ 0 (10.8)

is exact, so it is a projective resolution of HpGq in mod-M. Hence pdHpGq ¤ n.
Next we show that pdHpAq ¤ max

 
n,G-dimA

( � 1, @A P A . Indeed let t :� G-dimA . Consider the

cotorsion pair pGProjA ,Proj 8A q in A and note that Proj 8A � Proj¤t A , see [12]. Let 0 ÝÑ YA ÝÑ
GA ÝÑ A ÝÑ 0 be the right GProjA -approximation sequence of A, so YA has finite projective dimension,
i.e. pdYA ¤ t. Applying the functor HomA pM,�q to the above short exact sequence, and using that
ExtnA pM, YAq � 0, @n ¥ 1, since M consists of Gorenstein-projective objects and YA has finite projective
dimension, we deduce a short exact sequence

0 ÝÑ HpYAq ÝÑ HpGAq ÝÑ HpAq ÝÑ 0 (10.9)

in mod-M. Let 0 ÝÑ P t ÝÑ P t�1 ÝÑ � � � ÝÑ P 0 ÝÑ YA ÝÑ 0 be a projective resolution of YA. Applying
the functor H, and using that M consists of Gorenstein-projective objects, we then have an exact sequence

0 ÝÑ HpP tq ÝÑ HpP t�1q ÝÑ � � � ÝÑ HpP 1q ÝÑ HpP 0q ÝÑ HpYAq ÝÑ 0 (10.10)
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which is a projective resolution of HpYAq. Hence pdHpYAq ¤ t. Now since pdHpGAq ¤ n and pdHpYAq ¤ t,
it follows from (10.9) that pdHpAq ¤ maxtn, tu� 1. We infer that pdHpAq ¤ maxtn,G-dimA u� 1, @A P A .
Next we show that gl. dimmod-M ¤ maxtn,G-dimA u� 3. For any object F P mod-M, considering the exact
sequence (10.2) associated to F , it follows directly that pdF ¤ pdHpAF q � 2. Hence by the above we have
pdF ¤ maxtn,G-dimA u � 3. Thus gl. dimmod-M ¤ maxtn,G-dimA u � 3   8.

Now assume that (i) holds and X � 0, or equivalently M � ProjA . Then Proposition 10.3 shows that
gl. dimmod-M ¥ n � 2. Hence we have the bounds n � 2 ¤ gl. dimmod-X ¤ maxtn,G-dimA u � 3. If
0 � F P mod-X, then F admits a presentation 0 ÝÑ HpAF q ÝÑ HpM1q ÝÑ HpM0q ÝÑ F ÝÑ 0,
where the map M1 ÝÑ M0 is epic. Since the M i are Gorenstein-projective and GProjA is closed under
kernels of epimorphisms, it follows that AF is Gorenstein-projective. Hence by the above argument we have
pdHpAF q ¤ n and therefore pdF ¤ n� 2. Since by Lemma 10.2(iii), ExtkpF,HpMqq � 0, 0 ¤ k ¤ n� 1, and
F � 0, we infer by Lemma 10.1 that pdF � n� 2.

We show equation (10.5). Let A be in A and consider the exact sequence 0 ÝÑ YA ÝÑ GA ÝÑ A ÝÑ 0
where the map GA ÝÑ A is a right GProjA -approximation sequence of A, so YA has finite projective
dimension, i.e. YA P Proj 8A . Since GA is Gorenstein-projective, there exists a short exact sequence
0 ÝÑ GA ÝÑ P ÝÑ Ω�1GA ÝÑ 0, where P is projective and Ω�1GA is Gorenstein-projective. Then
the composition YA ÝÑ GA ÝÑ P induces a short exact sequence 0 ÝÑ YA ÝÑ P ÝÑ Y A ÝÑ 0 and
clearly Y A has finite projective dimension. By diagram chasing then it is easy to see that there exists
a short exact sequence 0 ÝÑ GA ÝÑ A ` P ÝÑ Y A ÝÑ 0. Hence A P GProjA � Proj 8A . Using
that GProjA � X � Xr1s � � � � � Xrns, it follows that GProjA � M � Ω�1M � � � � � Ω�nM. We infer that

A � GProjA � Proj 8A �M � Ω�1M � � � � � Ω�nM � Proj 8A .
(a) If G-dimA   n, then any object Y P A of finite projective dimension has projective dimension   n.

It follows that pdHpY q   n. Now the short exact sequence (10.9) induces a long exact sequence, @A P A :

� � � ÝÑ ExtnA pHpGAq,�q ÝÑ ExtnA pHpYAq,�q ÝÑ Extn�1
A pHpAq,�q ÝÑ Extn�1

A pHpGAq,�q ÝÑ � � �
Since we have pdHpGAq ¤ n and pdHpYAq   n, we have Extn�1

A pHpAq,�q � 0 and therefore pdHpAq ¤ n.
It follows that gl. dimmod-M ¤ n� 2 and consequently gl. dimmod-M � n� 2.

(b) If G-dimA � n, then as above we have Extn�2
A pHpAq,�q � 0, so pdHpAq ¤ n � 1 and therefore

gl. dimmod-M ¤ n� 3. Then from (10.6) we have n� 2 ¤ gl. dimmod-M ¤ n� 3.

(c) If G-dimA ¡ n, then as above we have ExtG-dimA�2
A pHpAq,�q � 0, so pdHpAq ¤ G-dimA � 1 and

therefore gl. dimmod-M ¤ G-dimA �3. Then from (10.6) we have n�2 ¤ gl. dimmod-M ¤ G-dimA �3. ¤

Corollary 10.7. Let A be a Gorenstein abelian category with enough projectives. Let X be an pn�1q-cluster
tilting subcategory of GProjA and let M � π�1X. Then for any F P mod-X and any G P mod-X we have:

ExtkpF,Gq � 0, @k ¥ 0, k � n� 2� i, � � � , n� 2, 0 ¤ i � pdG ¤ maxtn,G-dimA u � 3

Proof. By Theorem 10.6 we have pdF � n� 2 and ExtkpF,HpMqq � 0, @k ¥ 0, k � n� 2. On the other by
the same Theorem we know that pdG ¤ maxtn,G-dimA u� 3. Now the assertion follows easily by induction
on pdG by applying the functor pF,�q to a the extensions 0 ÝÑ ΩjG ÝÑ HpN j�1q ÝÑ Ωj�1G ÝÑ 0. ¤

Corollary 10.8. Let A be Gorenstein and assume that GProjA is pn� 1q-Calabi-Yau. Let X be an pn� 1q-
cluster tilting subcategory of GProjA and let M � π�1X. If HompM,ΩiMq � 0, 1 ¤ i ¤ n� 1, then mod-X
is 1-Gorenstein and the stable triangulated category GProjmod-X is pn� 2q-Calabi-Yau.

Keller and Reiten proved that if X is a 2-cluster tilting subcategory of A , where A is a Frobenius abelian
category and if A is 2-Calabi-Yau, then gl. dimmod-M � 3, where M � π�1pXq, see [21]. The following direct
consequence of Theorem 10.6 and Corollary 10.4, generalizes the result of Keller-Reiten for any pn�1q-cluster
tilting subcategory, n ¥ 2, without assuming the Calabi-Yau condition.

Corollary 10.9. Let A be an abelian category with enough projectives and enough injectives. For a full
subcategory M � GProjA , the following are equivalent.

(i) A is Frobenius and M is an pn� 1q-cluster tilting subcategory of A .
(ii) M is contravariantly finite in A , contains the projectives, and MK

n �M.
(iii) M is covariantly finite in A , contains the injectives, and KnM �M.
(iv) M is n-rigid, contravariantly in A and contains the projectives, or covariantly finite and contains

the injectives, and gl. dimmod-M � n� 2.
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In particular if A is a Krull-Schmidt Frobenius abelian category and X is an pn � 1q-cluster subcategory of
A which is of finite representation type, then

rep. dimA ¤ n� 2

Corollary 10.10. For an Artin algebra Λ the following are equivalent.

(i) Λ is Gorenstein and GprojΛ contains a pn� 1q-cluster tilting object.

(ii) A contains a generator M such that addM �MK
n X GprojΛ and gl. dimEndΛpMq   8.

If piiq holds, then M is a cogenerator if and only if Λ is self-injective and then rep. dimΛ ¤ n� 2.

Corollary 10.11. Let Λ be an Artin algebra and let T be an pn� 1q-cluster tilting object of GprojΛ, n ¥ 1.

If ExttpT,DTrT q � 0, 2 ¤ t ¤ n� k� 1, where 0 ¤ k ¤ n� 1, then the cluster tilting algebra mod-EndΛpT q is
k-Gorenstein. Moreover for 0 ¤ k ¤ 1, the stable category Gprojmod-EndΛpT q is pn� 2q-Calabi-Yau provided
that GprojΛ is pn� 1q-Calabi-Yau.
Proof. For any T1, T2 P addT and for 2 ¤ t ¤ n� k � 1, we have:

ExttΛpT1,DTrT2q � Ext1ΛpΩt�1T1,DTrT2q � DHomΛpT2,Ω
t�1T1q

It follows that HomΛpT2,Ω
tT1q � 0, 1 ¤ t ¤ n � k and therefore the pn � 1q-cluster tilting object T ispn� kq-strong. Then the assertions follow from Corollary 10.8. ¤

The following is also a result of Keller-Reiten, see [21, Theorem 5.4], called relative pn � 2q-Calabi-Yau
duality, proved in loc.cit., in the setting of an algebraic pn� 1q-Calabi-Yau triangulated category over a field.
However in our setting we give a different proof.

Corollary 10.12. Let A be a Gorenstein abelian Hom-finite k-category over a field k, and assume that
GProjA is pn � 1q-Calabi-Yau. Let 0 � X be a pn � 1q-cluster tilting subcategory of GProjA , where d ¥ 2.

If M � π�1X, then for any object F P mod-X � mod-M, there is a natural isomorphism:

DHomDbpmod-Mq
�
F,�� �ÝÑ HomDbpmod-Mq

��, F rn� 2s�
In particular, for any two objects F,G P mod-M with F P mod-X � mod-M:

DExtimod-M

�
F,G

� �ÝÑ Extn�i�2
mod-M

�
G,F

�
, i P Z

Proof. By Theorem 1.5, gl. dimmod-M   8, so by a result of Happel [14], Dbpmod-Mq, which coincides,
up to equivalence, with the category of perfect complexes over mod-M, has Auslander-Reiten triangles and
therefore Dbpmod-Mq admits a Serre functor which is given by S � � bL

M DHomA p�, ?q|Mr�1s, where
HomA p�, ?q|MpMq � HomA p�,Mq � HpMq. Hence we have a natural isomorphism

DHomDbpmod-Mq
�
F,�� �ÝÑ HomDbpmod-Mq

��, F bL
M DHomA p�, ?q|Mr�1s�

So it suffices to show that we have an isomorphism F rn� 2s �ÝÑ F bL
MDHomA p�, ?q|Mr�1s, or equivalently

an isomorphism in the derived category Dbpmod-Mq:
F rn� 3s �ÝÑ F bL

M DHomA p�, ?q|M (10.11)

Applying the triangulated functor � bL
M DHomA p�, ?q|M to projective resolution of F in (10.4) with F

deleted, it is easy to see that we obtain a complex

0 ÝÑ DHomA pMn
AF

,�q|M ÝÑ DHomA pMn�1
AF

,�q|M ÝÑ � � � ÝÑ DHomA pM0
AF

,�q|M ÝÑ
� � � ÝÑ DHomA pM1,�q|M ÝÑ DHomA pM0,�q|M ÝÑ 0

which is acyclic everywhere except in first position on the left, which corresponds to �n�3 degree, where the
homology is given by DExt1pKn�1

F ,�q|M. Since GProjA is pn�1q-Calabi-Yau, we have natural isomorphisms:

DExt1pKn�1
F ,�q|M � DHomA pΩKn�1

F ,�q|M � HomA p�,Ω�n�1ΩKn�1
F q|M �

HomA p�,Ω�nKn�1
F q|M � HomA pΩnp�q,Kn�1

F q|M � ExtnA p�,Kn�1
F q|M � F

where the last isomorphism follows from Lemma 10.2. We infer that in Dbpmod-Mq we have isomorphisms

F rn� 3s �ÝÑ ExtnA p�,Kn�1
F q|M �ÝÑ F bL

M DHomA p�, ?q|M ¤
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