RELATIVE HOMOLOGY AND HIGHER CLUSTER-TILTING THEORY

APOSTOLOS BELIGIANNIS

Incomplete Preliminary Version

Contents

1. Introduction 1
2. Relative Homology 5
3. Ghosts and Extensions 8
4. Rigid Subcategories 12
5. Homological Dimension 14
6. Cluster-Tilting Subcategories 17
7. Certain Cluster Tilting Subcategories are Gorenstein 20
8. Gorenstein-Projectives 27
9. Certain Cluster Tilted Subcategories are Stably Calabi-Yau 32
10. Global Dimension of Non-Stable Cluster Tilting Subcategories 39
References 47

1. Introduction

The main aim of these notes is to present some homological aspects of higher cluster tilting theory in triangulated categories. We concentrate at four themes:
(i) Characterizations and basic properties of cluster tilting subcategories.
(ii) The Gorenstein condition.
(iii) The Calabi-Yau condition.
(iv) Global dimension of non-stable cluster tilting subcategories.

In the following we describe the main results contained in the notes, the starting point of which are the two basic papers of Keller and Reiten [21, 22].
1.1. Cluster-tilting subcategories. Let \mathcal{T} be a triangulated category with split idempotents. We fix a full subcategory X of \mathcal{T} and we assume always that X is closed under isomorphisms, (finite) direct sums and direct summands.

Definition 1.1. For an integer $n \geqslant 1$, we say that X is $(n+1)$-cluster tilting if:
(i) X is functorially finite in \mathcal{T}.
(ii) $X=\{A \in \mathcal{T} \mid \mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n\}$.
(iii) $X=\{A \in \mathcal{T} \mid \mathcal{T}(A, X[i])=0,1 \leqslant i \leqslant n\}$.
1.2. Some useful tools. There are several tools for the study of an $(n+1)$-cluster tilting subcategory X of \mathcal{T}. For the moment, let \mathcal{X} be an arbitrary full subcategory of \mathcal{T}.

1. Associated with X are the full subcategories, $k \geqslant 1$:

$$
X_{k}^{\top}=\{A \in \mathcal{T} \mid \mathcal{T}(X, A[i])=0, \quad 1 \leqslant i \leqslant k\} \quad \text { and } \quad{ }_{k}^{\top} X=\{A \in \mathcal{T} \mid \mathcal{T}(A, X[i])=0,1 \leqslant i \leqslant k\}
$$

We call $\mathcal{X} n$-rigid if $X \subseteq X_{n}^{\top}$ or equivalently $\mathcal{X} \subseteq{ }_{n}^{\top} X$. Note that we have a decreasing filtration of \mathcal{T} :

$$
\begin{equation*}
\mathcal{T} \supseteq X_{1}^{\top} \supseteq X_{2}^{\top} \supseteq \cdots \supseteq X_{k}^{\top} \supseteq \cdots \tag{1.1}
\end{equation*}
$$

2. For any $k \geqslant 0$, we consider all morphisms $f: A \longrightarrow B$ in \mathcal{T} such that $\mathcal{T}(\mathcal{X}[k], f)=0$. The set of all such morphisms forms a subgroup $\mathrm{Gh}_{X[k]}(A, B)$ of $\mathcal{T}(A, B)$, called the subgroup of $X[k]$-ghost maps and in this way we obtain an ideal $\mathrm{Gh}_{x[k]}(\mathcal{T})$. Then the product ideal

$$
\mathrm{Gh}_{X}^{[k]}(\mathcal{T})=\mathrm{Gh}_{X}(\mathcal{T}) \circ \mathrm{Gh}_{X[1]}(\mathcal{T}) \circ \mathrm{Gh}_{X[2]}(\mathcal{T}) \circ \cdots \circ \mathrm{Gh}_{X[k-1]}(\mathcal{T})
$$

is defined, and clearly $\mathrm{Gh}_{x}^{[k+1]}(A, B)$ consists of all maps $f: A \longrightarrow B$ which can be written as a composition $f=f_{0} \circ f_{1} \circ \cdots \circ f_{k-1}$, where $f_{0}: A \longrightarrow B_{0}$ is \mathcal{X}-ghost, $f_{1}: B_{0} \longrightarrow B_{1}$ is $\mathcal{X}[1]$-ghost, $\cdots, f_{n-1}: B_{n-1} \longrightarrow B$ is $X[k-1]$-ghost.

Then there is an increasing filtration of the Hom-functor $\mathcal{T}(-,-)$ of \mathcal{T} :

$$
\begin{equation*}
\cdots \subseteq \mathrm{Gh}_{x}^{[k]}(\mathcal{T}) \subseteq \cdots \subseteq \mathrm{Gh}_{X}^{[2]}(\mathcal{T}) \subseteq \mathrm{Gh}_{x}(\mathcal{T}) \subseteq \mathcal{T}(-,-) \tag{1.2}
\end{equation*}
$$

3. The structure of the ideal $\mathrm{Gh}_{X}^{[k]}(\mathcal{T})$ of X-ghost maps is related to the structure of the category $X \star X[1] \star \cdots \star X[k]$ of extensions of the subcategories $X[k]$. Recall that if $\mathscr{A}_{i}, i=1,2$, are full subcategories of \mathcal{T}, then $\mathscr{A}_{1} \star \mathscr{A}_{2}$ is the full subcategory of \mathcal{T} consisting of all direct summands of objects $C \in \mathcal{T}$ for which there exists a triangle $A_{1} \longrightarrow C \longrightarrow A_{2} \longrightarrow A_{1}[1]$, where $A_{i} \in \mathscr{A}_{i}$. The full subcategory $\mathscr{A}_{1} \star \mathscr{A}_{2} \star \cdots \star A_{k}$ is defined inductively fro full subcategories $A_{i}, 1 \leqslant i \leqslant k$.

Then we have an increasing filtration of \mathfrak{T} :

$$
\begin{equation*}
X \subseteq X \star X[1] \subseteq \cdots \subseteq X \star X[1] \star \cdots \star x[k] \subseteq \cdots \subseteq \mathcal{T} \tag{1.3}
\end{equation*}
$$

4. Finally an indispensable tool for the study of an $(n+1)$-cluster tilting subcategory \mathcal{X} of \mathcal{T} is the homological functor

$$
\mathrm{H}: \mathcal{T} \longrightarrow \bmod -X, \quad \mathrm{H}(A)=\mathcal{T}(-, A) \mid x
$$

defined for any contravariantly finite subcategory \mathcal{X} of \mathcal{T}, where we denote by mod- \mathcal{X} the category of coherent (or finitely presented) contravariant functors over \mathcal{X}. Note that an easy consequence of the fact that \mathcal{X} is contravariantly finite in \mathcal{T}, is that mod $-\mathcal{X}$ is abelian.

If X is 1 -rigid, then the functor H is surjective on objects.
1.3. Relative Homology in \mathcal{T}. If \mathcal{X} is a full contravariantly finite subcategory of \mathcal{T}, then for any object $A \in \mathcal{T}$, there exists a triangle

$$
\Omega_{x}^{1}(A) \longrightarrow X_{A}^{0} \longrightarrow A \longrightarrow \Omega_{x}^{1}(A)[1]
$$

where the middle map is a right X-approximation of A. Note that the object $\Omega_{X}^{1}(A)$ is uniquely determined in the stable category \mathcal{T} / X. Inductively we define the object $\Omega_{X}^{k}(A), \forall k \geqslant 1$. If X is covariantly finite, then dually the objects $\Sigma_{X}^{k}(A)$ are defined, $\forall k \geqslant 1$. The minimum k, or ∞, such that Ω_{X}^{k} lies in X, is well-defined, it is denoted by gl. $\operatorname{dim}_{X} \mathcal{T}$ and is called the \mathcal{X}-global dimension of \mathcal{T}.

Then we have the following characterizations of when a full subcategory \mathcal{X} of \mathcal{T} is $(n+1)$-cluster tilting, for some $n \geqslant 1$.

Theorem A. Let \mathcal{X} be a full subcategory of \mathcal{T}, and $n \geqslant 1$. Then the following are equivalent.
(i) X is a $(n+1)$-cluster tilting subcategory of \mathcal{T}.
(ii) X is contravariantly finite and $X=X_{n}^{\top}$.
(iii) X is covariantly finite and $X={ }_{n}^{\top} X$.
(iv) X is contravariantly finite and both X and X_{n}^{\top} are n-rigid.
(v) X covariantly finite and both X and ${ }_{n}^{\top} X$ are n-rigid.
(vi) X is contravariantly (or covariantly) finite n-rigid and: $\operatorname{gl}^{\operatorname{dim}} \operatorname{di}_{X} \mathcal{T}=n$.
(vii) X is contravariantly (or covariantly) finite n-rigid and: $\mathcal{T}=X \star X[1] \star \cdots \star X[n]$.
(viii) X is contravariantly (or covariantly) finite n-rigid and: $\mathrm{Gh}^{[n+1]}(\mathcal{T})=0$.
(ix) \mathcal{X} is contravariantly (or covariantly) finite n-rigid and, $\forall A \in \mathcal{T}: \Omega_{X}^{n}(A) \in \mathcal{X}$.
(x) X is covariantly (or contravariantly) finite n-rigid and, $\forall A \in \mathcal{T}: \Sigma_{X}^{n}(A) \in X$.
(xi) X is contravariantly finite n-rigid, any object of $X_{n}^{\top}[n+1]$ is injective in mod- X and the functor $\mathrm{H}: X_{n}^{\top}[n+1] \longrightarrow \bmod -X$ is full and reflects isomorphisms.
If X is a $(n+1)$-cluster subcategory of \mathcal{T}, then $X_{n+1}^{\top}=0={ }_{n+1}^{\top} \mathcal{X}$, the abelian category mod- \mathcal{X} has enough projectives and enough injectives, the functors $X[n+1] \longrightarrow \bmod -\mathcal{X} \longleftarrow X$ are fully faithful and induce equivalences

$$
X[n+1] \xrightarrow{\approx} \operatorname{Inj} \bmod -X \text { and } \quad X \xrightarrow{\approx} \operatorname{Proj} \bmod -X
$$

1.4. The Gorenstein condition. Let \mathscr{A} be an abelian category with enough projectives and enough injectives. Recall the following invariants attached to \mathscr{A} :

$$
\begin{gathered}
\operatorname{silp\mathscr {A}=\operatorname {sup}\{ idP|P\in \operatorname {Proj}\mathscr {A}\} ,\quad \operatorname {spli}\mathscr {A}=\operatorname {sup}\{ \operatorname {pd}I|I\in \operatorname {Inj}\mathscr {A}\} } \\
G-\operatorname{dim} \mathscr{A}:=\max \{\operatorname{silp} \mathscr{A}, \operatorname{spli} \mathscr{A}\}
\end{gathered}
$$

We call G-dim \mathscr{A} the Gorenstein dimension of \mathscr{A} and then \mathscr{A} is called Gorenstein if G-dim $\mathscr{A}<\infty$. If G- $\operatorname{dim} \mathscr{A} \leqslant n<\infty$, then we say that \mathscr{A} is n-Gorenstein.

Let X be an $(n+1)$-cluster tilting subcategory of $\mathcal{T}, n \geqslant 1$. If $n=1$, then by a result of Keller-Reiten [21], the category mod- \mathcal{X} is 1-Gorenstein. However this fails for $n>1$. To remedy this failure, we consider a strengthening of the notion of cluster tilting subcategories.

Definition 1.2. An $(n+1)$-cluster tilting subcategory \mathcal{X} of \mathcal{T} is called t-strong, where $1 \leqslant t \leqslant n$, if:

$$
\mathcal{T}(X, X[-i])=0, \quad 1 \leqslant i \leqslant t
$$

And X is called strictly t-strong, if X is t-strong but not $(t+1)$-strong.
Then we have the following result.
Theorem B. Let \mathcal{T} be a triangulated category and \mathcal{X} an $(n+1)$-cluster tilting subcategory of \mathcal{T}.
(i) If $n=1$, then $G-\operatorname{dim} \bmod -\mathcal{X} \leqslant 1$.
(ii) G-dim mod- $X=0$ if and only if X is n-strong.
(iii) Assume that $n \geqslant 2$ and \mathcal{X} is $(n-k)$-strong, where $0 \leqslant k \leqslant n-1$. Then for $n \geqslant 2 k-1$, the cluster tilted category mod-X is Gorenstein:

$$
0 \leqslant k \leqslant \frac{n+1}{2} \quad \Longrightarrow \quad \text { G-dim mod}-x \leqslant k
$$

In particular:
(a) If n is odd and X is $\left(\frac{n-1}{2}\right)$-strong, then: G-dim $\bmod -\mathcal{X} \leqslant \frac{n+1}{2}$.
(b) If n is even and X is $\left(\frac{n+1}{2}\right)$-strong, then: G-dim mod- $\mathcal{X} \leqslant \frac{n-1}{2}$.

- Moreover if X is strictly $(n-k)$-strong, then: $\quad G-\operatorname{dim} \bmod -\mathcal{X}=k$.

As a consequence we have the following which shows that if mod- X has finite global dimension, then it can be realized as a full subcategory of \mathcal{T}, in some cases via a ∂-functor.

Theorem C. Let \mathcal{X} an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of \mathcal{T}. If mod- \mathcal{X} has finite global dimension, and $n \geqslant 2 k$, then gl. dim mod- $\mathcal{X} \leqslant k$ and there is an equivalence

$$
\mathcal{T}(-, ?) \mid x:(X \star X[1] \star \cdots \star X[k]) \cap X_{k}^{\top}[k+1] \xrightarrow{\approx} \bmod -X
$$

If $k=1$, then the induced full embedding $\mathrm{T}: \bmod -\mathcal{X} \longrightarrow \mathcal{T}$ is a ∂-functor, which extends uniquely to an additive functor $\mathbf{D}^{b}(\bmod -\mathcal{X}) \longrightarrow \mathcal{T}$ commuting with the shifts.
1.5. The Calabi-Yau condition. Assume that the triangulated category \mathcal{T} is k-linear with finite-dimensional Hom-spaces over a field k. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of $\mathcal{T}, n \geqslant 1$. We assume that \mathcal{T} is $(n+1)$-Calabi-Yau. This roughly means that there are natural isomorphisms:

$$
\operatorname{DHom}_{\mathcal{T}}(A, B) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{T}}(B, A[n+1])
$$

$\forall A, B \in \mathcal{T}$, where D denotes duality with respect to the base field k.
If $n=1$, and \mathcal{T} is 2-Calabi-Yau, then by a result of Keller-Reiten [22], the stable category GProj mod- \mathcal{X} of the Gorenstein-projective (or Cohen-Macaulay) objects of the 1-Gorenstein category mod- \mathcal{X} is 3 -Calabi-Yau.

Assuming that $n \geqslant 1$.
Theorem D. Assume that \mathcal{T} is $(n+1)$-Calabi-Yau over a field k, and \mathcal{X} is an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of $\mathcal{T}, 0 \leqslant k \leqslant n-1$. Then GProj mod- \mathcal{X} is $(n+2)$-Calabi-Yau in the following cases:
(i) $0 \leqslant k \leqslant 1$, or,
(ii) $2 \leqslant k \leqslant \frac{n+1}{2}$, and any object $\mathcal{T}(-, C) \mid x$ in mod- X, where $C \in X[-n+1] \star \cdots \star \mathcal{X}[-1]$, has finite projective or injective dimension.
1.6. Global dimension of non stable cluster tilting subcategories. Let \mathscr{A} be an abelian category with enough projective objects. We consider full subcategories \mathcal{M} of \mathscr{A}, closed under isomorphisms, finite direct sums and direct summands.

In analogy with the triangulated case, we define for any full subcategory $\mathcal{N} \subseteq \mathscr{A}$:

$$
\mathcal{M}_{n}^{\perp}=\left\{A \in \mathscr{A} \mid \operatorname{Ext}^{k}(\mathcal{M}, A)=0,1 \leqslant k \leqslant n\right\} \quad \text { and } \quad{ }_{n}^{\perp} \mathcal{M}=\left\{A \in \mathscr{A} \mid \operatorname{Ext}^{k}(A, \mathcal{M})=0,1 \leqslant k \leqslant n\right\}
$$

Then \mathcal{M} is called n-rigid if $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$ or equivalently $\mathcal{M} \subseteq \frac{1}{n} \mathcal{N}$.
We are interested in the case \mathcal{M} is a lift of a cluster tilting subcategory X of the triangulated category Gproj \mathscr{A} of Gorenstein-projective objects of \mathscr{A}, in the sense that $\mathcal{M}=\pi^{-1}(X)$, where $\pi:$ GProj $\mathscr{A} \longrightarrow$ GProj \mathscr{A} is the natural projection functor. Note that then \mathcal{M} contains the projectives and at the level of coherent functors we have an inclusion mod- $\mathcal{X} \subseteq \bmod -\mathcal{M}$.

Let \mathcal{U}, \mathcal{V} be full subcategories of \mathscr{A}. Then we define $\mathcal{U} \diamond \mathcal{V}$ to be the full subcategory
$\mathcal{U} \diamond \mathcal{V}=\operatorname{add}\{A \in \mathscr{A} \mid \exists$ an exact sequence $: 0 \longrightarrow U \longrightarrow A \longrightarrow V \longrightarrow 0$, where $U \in \mathcal{U}$ and $V \in \mathcal{V}\}$
Inductively we define $\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}, \forall n \geqslant 1$, for full subcategories \mathcal{U}_{i} of \mathscr{A}. Finally we denote by Proj$\leqslant k \mathscr{A}$, the full subcategory of \mathscr{A} consisting of all objects with projective dimension $\leqslant k$.

Theorem E. Let \mathscr{A} be an abelian category with enough projectives. Let $\underline{\mathcal{X}}$ be a full subcategory of GProj \mathscr{A} and set $\mathcal{M}=\pi^{-1} \underline{X}$. Then the following are equivalent.
(i) \mathscr{A} is Gorenstein and \underline{X} is an $(n+1)$-cluster tilting subcategory of GProj \mathscr{A}.
(ii) \mathcal{M} is contravariantly finite in \mathscr{A} and $\mathcal{M}_{n}^{\perp} \cap G \operatorname{Proj} \mathscr{A}=\mathcal{M}$ and gl. $\overline{\operatorname{dim} \bmod -\mathcal{M}}<\infty$. If (i) holds and $\underline{\mathcal{X}} \neq 0$, then ${ }_{n}^{\perp} \mathcal{M} \cap G \operatorname{Proj} \mathscr{A}=\mathcal{M}$, we have an equality

$$
\begin{equation*}
\mathscr{A}=\mathcal{M} \diamond \Omega^{-1} \mathcal{M} \diamond \cdots \diamond \Omega^{-n} \mathcal{M} \diamond \operatorname{Proj}^{\leqslant d} \mathscr{A} \tag{1.4}
\end{equation*}
$$

where $\mathrm{G}-\operatorname{dim} \mathscr{A}=d$, and gl . $\operatorname{dim} \bmod -\mathcal{M}$ is bounded as follows:

$$
\begin{equation*}
n+2 \leqslant \text { gl. dim mod- } \mathcal{M} \leqslant \max \{n, G-\operatorname{dim} \mathscr{A}\}+3 \tag{1.5}
\end{equation*}
$$

Moreover $\operatorname{pd}_{\text {mod- } \mathcal{M}} F=n+2, \forall F \in \bmod -\mathcal{X}, F \neq 0$, and:
(a) If G-dim $\mathscr{A}<n$, then: gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$.
(b) If G-dim $\mathscr{A}=n$, then: gl. $\operatorname{dim} \bmod -\mathcal{M} \in\{n+2, n+3\}$.
(c) If G-dim $\mathscr{A}>n$, then: $n+2 \leqslant \operatorname{gl} \cdot \operatorname{dim} \bmod -\mathcal{M} \leqslant \mathrm{G}-\operatorname{dim} \mathscr{A}+3$.

If GProj \mathscr{A} is $(n+1)$-Calabi-Yau, then we have relative $(n+2)$-Calabi-Yau duality [21]: for any object $F \in \bmod -\mathcal{X} \subseteq \bmod -\mathcal{M}$, there is a natural isomorphism:

$$
\mathrm{D} \mathrm{Hom}_{\mathbf{D}^{b}(\bmod -\mathcal{M})}(F,-) \xrightarrow{\cong} \operatorname{Hom}_{\mathbf{D}^{b}(\bmod -\mathcal{M})}(-, F[n+2])
$$

In particular, for any two objects $F, G \in \bmod -\mathcal{M}$ with $F \in \bmod -\mathcal{X} \subseteq \bmod -\mathcal{M}$:

$$
\operatorname{DExx}_{\text {mod-M }}^{i}(F, G) \xrightarrow{\cong} \operatorname{Ext}_{\text {mod-M }}^{n-i+2}(G, F), \quad i \in \mathbb{Z}
$$

As a consequence we have the following, see [21] for the case $n=1$.
Theorem F. Let \mathscr{A} be an abelian category with enough projectives and enough injectives. For a full subcategory $\mathcal{M} \subseteq G \operatorname{Groj} \mathscr{A}$, the following are equivalent.
(i) \mathscr{A} is Frobenius and $\underline{\mathcal{M}}$ is an $(n+1)$-cluster tilting subcategory of \mathscr{A}.
(ii) \mathcal{M} is contravariantly finite in \mathscr{A}, contains the projectives, and $\mathcal{M}_{n}^{\perp}=\mathcal{M}$.
(iii) \mathcal{M} is covariantly finite in \mathscr{A}, contains the injectives, and ${ }_{n}{ }^{\perp} \mathcal{M}=\mathcal{M}$.
(iv) \mathcal{M} is n-rigid, contravariantly in \mathscr{A} and contains the projectives, or covariantly finite and contains the injectives, and gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$.
In particular if \mathscr{A} is a Krull-Schmidt Frobenius abelian category and X is an $(n+1)$-cluster subcategory of \mathscr{A} which is of finite representation type, then

$$
\text { rep. } \operatorname{dim} \mathscr{A} \leqslant n+2
$$

The invariant rep. $\operatorname{dim} \mathscr{A}$ above is Auslander's representation dimension, which in this context is defined
 subcategory add T contains the projectives and the injectives and moreover admits weak kernels and weak cokernels, equivalently the ring $\operatorname{End}_{\mathscr{A}}(T)$ is coherent.

2. Relative Homology

Throughout the paper we denote by \mathcal{T} a triangulated category with split idempotents. We fix a full additive contravariantly finite subcategory \mathcal{X} of \mathcal{T} which is closed under isomorphisms and direct summands.

Let A be in \mathcal{T} and consider triangles

$$
\begin{equation*}
\Omega_{X}^{t+1}(A) \xrightarrow{g_{A}^{t}} X_{A}^{t} \xrightarrow{f_{A}^{t}} \Omega_{X}^{t}(A) \xrightarrow{h_{A}^{t}} \Omega_{X}^{t+1}(A)[1] \tag{A}
\end{equation*}
$$

where $\Omega_{x}^{0}(A):=A$, and the middle map $X_{A}^{t} \longrightarrow \Omega_{x}^{t}(A)$ to be a right $X_{\text {-approximation of }} \Omega_{x}^{t-1}(A)$. Applying the homological functor $\mathrm{H}: \mathcal{T} \longrightarrow \operatorname{Mod}-\mathcal{X}$, defined by $\mathrm{H}(A)=\mathcal{T}(-, A) \mid x$, to the above triangles we have exact sequences $\mathrm{H}\left(\Omega_{x}^{t+1} A\right) \longrightarrow \mathrm{H}\left(X_{A}^{t}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{t} A\right) \longrightarrow 0, \forall t \geqslant 0$. In particular we have an exact sequence which is a projective presentation of $\mathrm{H}(A)$:

$$
\mathrm{H}\left(X_{A}^{1}\right) \longrightarrow \mathrm{H}\left(X_{A}^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0
$$

It follows that $\mathrm{H}(A)$ is coherent and therefore H induces a homological representation functor

$$
\mathrm{H}: \mathcal{T} \longrightarrow \bmod -X, \quad \mathrm{H}(A)=\mathcal{T}(-, A) \mid x
$$

Since \mathcal{T}, as a triangulated category, has weak kernels, and since X is contravariantly finite in \mathcal{T}, it is easy to see that \mathcal{X} has weak kernels and therefore the category mod- \mathcal{X} is abelian with enough projectives and it is well-known that H induces an equivalence $X \approx \operatorname{Proj} \bmod -\mathcal{X}$. Clearly we have

$$
\text { Ker } \mathrm{H}=X^{\top}:=\{A \in \mathcal{T} \mid \mathcal{T}(X, A)=0\}
$$

Remark 2.1. Dually if X is covariantly finite, then the category X-mod of coherent covariant functors is abelian and we have a contravariant cohomological functor

$$
\mathrm{H}^{\mathrm{op}}: \mathcal{T}^{\mathrm{op}} \longrightarrow X \text {-mod, } \quad \mathrm{H}(A)=\mathcal{T}(A,-) \mid x
$$

Clearly then $\operatorname{Ker} \mathrm{H}^{\mathrm{op}}={ }^{\top} \mathcal{X}:=\{A \in \mathcal{T} \mid \mathcal{T}(A, \mathcal{X})=0\}$.
2.1. Ghost and Cellular Towers. Fix an object A in \mathcal{T} and consider as before the triangles

$$
\begin{equation*}
\Omega_{X}^{t+1}(A) \xrightarrow{g_{A}^{t}} X_{A}^{t} \xrightarrow{f_{A}^{t}} \Omega_{X}^{t}(A) \xrightarrow{h_{A}^{t}} \Omega_{X}^{t+1}(A)[1] \tag{A}
\end{equation*}
$$

Then, as in [8, Section 5], we may construct inductively a tower of triangles in \mathcal{T} containing all the essential information concerning the homological behavior of A with respect to X, that we need in the sequel. We proceed as follows: First we form the weak-push-out, in the sense of [8], of the triangle

$$
\begin{equation*}
\Omega_{X}^{1}(A) \xrightarrow{g_{A}^{0}} X_{A}^{0} \xrightarrow{f_{A}^{0}} A \xrightarrow{h_{A}^{0}} \Omega_{X}^{1}(A)[1] \tag{A}
\end{equation*}
$$

along the map $h_{A}^{1}: \Omega_{x}^{1}(A) \longrightarrow \Omega_{x}^{2}(A)[1]$. Then we obtain a morphism of triangles

Next consider the weak push-out of the lower triangle along the map $h^{2}[1]: \Omega_{x}^{2}(A)[1] \longrightarrow \Omega_{x}^{3}(A)[2]:$

Continuing in this way we obtain the following tower of triangles, henceforth denoted by $\left(C_{A}^{\bullet}\right)$:

where for convenience we set: $\operatorname{Cell}_{0}(A):=X_{A}^{0}, \omega_{A}^{0}:=h_{A}^{0}, \beta_{A}^{0}:=f_{A}^{0}$, and $\gamma_{A}^{0}:=g_{A}^{0}$. We call the map $\gamma_{A}^{n}: \operatorname{Cell}_{n}(A) \longrightarrow A$ the $n^{t h}$-cellular approximations of A and the induced tower

$$
\begin{align*}
A= & \operatorname{Cell}_{0}(A) \xrightarrow{\alpha_{A}^{1}} \operatorname{Cell}_{1}(A) \xrightarrow{\alpha_{A}^{2}} \operatorname{Cell}_{2}(A) \longrightarrow \operatorname{Cell}_{n-1}(A) \xrightarrow{\alpha_{A}^{n-1}} \operatorname{Cell}_{n}(A) \longrightarrow \\
& \ldots \longrightarrow \tag{A}
\end{align*}
$$

the cellular tower of A with respect to X, and the tower of objects

$$
\begin{align*}
& A=\Omega_{X}^{0}(A) \xrightarrow{h_{A}^{0}} \Omega_{X}^{1}(A)[1] \xrightarrow{h_{A}^{1}[1]} \Omega_{X}^{2}(A)[2] \longrightarrow \cdots \\
& \cdots \longrightarrow \Omega_{X}^{n-1}(A)[n-1] \xrightarrow{h_{A}^{n-1}[n-1]} \Omega_{X}^{n}(A)[n] \longrightarrow \cdots \tag{A}
\end{align*}
$$

is called the Ghost tower, or an Adams resolution, of A with respect to \mathcal{X}.
Remark 2.2. (i) By the construction of the cellular tower $\left(C_{A}^{\bullet}\right)$ we have triangles, $\forall t \geqslant 1$:

$$
\begin{align*}
X_{A}^{t}[t-1] & \operatorname{Cell}_{t-1}(A) \xrightarrow{\alpha_{A}^{t}} \operatorname{Cell}_{t}(A) \tag{2.2}\\
X_{A}^{t}[t] & \longrightarrow X_{A}^{t}[t] \tag{2.3}\\
\left.\Omega_{x}^{t}(A)[t]\right) \xrightarrow{h_{A}^{t}[t]} \Omega_{x}^{t+1}(A)[t+1] & \left.\longrightarrow \Omega_{x}^{t}(A)[t+1]\right)
\end{align*}
$$

Since $\operatorname{Cell}_{0}(A)=X_{A}^{0} \in X$, it follows that we have a triangle $X_{A}^{0} \longrightarrow \operatorname{Cell}_{1}(A) \longrightarrow X_{A}^{1}[1] \longrightarrow X_{A}^{0}[1]$ and therefore $\mathrm{Cell}_{1}(A) \in \mathcal{X} \star \mathcal{X}[1]$. By induction it follows that:

$$
\operatorname{Cell}_{t}(A) \in X \star X[1] \star \cdots \star X[t], \quad \forall t \geqslant 0
$$

(ii) Splicing the triangles $\left(T_{A}^{t}\right)$ we obtain a complex

$$
\begin{equation*}
\cdots \longrightarrow X_{A}^{n} \xrightarrow{\varepsilon_{A}^{n}} X_{A}^{n-1} \longrightarrow \cdots \longrightarrow X_{A}^{1} \xrightarrow{\varepsilon_{A}^{1}} X_{A}^{0} \xrightarrow{f_{A}^{0}} A \longrightarrow 0 \tag{A}
\end{equation*}
$$

where $\varepsilon_{A}^{n}=f_{A}^{n} \circ g_{A}^{n-1}, \forall n \geqslant 1$. Note that the complex $\left(X_{A}^{\bullet}\right)$ does not necessarily becomes exact after the application of the functor H .
(iii) If $\Omega_{X}^{n}(A)$ lies in X, then $\Omega_{X}^{n-t}(A)$ lies in $X \star X[1] \star \cdots \star X[n-t]$, and we may choose $X_{A}^{n}=\Omega_{X}^{n}(A)$. As a consequence we may choose $\Omega_{x}^{n+t}(A)=0, \forall t \geqslant 1$.
2.2. Cellular and Co-Ghost Cotowers. Dually if X is covariantly finite in \mathcal{T}, then for any object $A \in \mathcal{T}$ we may construct inductively triangles $\left(T_{t}^{A}\right), t \geqslant 0$:

$$
\begin{equation*}
\Sigma_{X}^{t+1}(A)[-1] \xrightarrow{h_{t}^{A}} \Sigma_{X}^{t}(A) \xrightarrow{f_{t}^{A}} X_{t}^{A} \xrightarrow{g_{t}^{A}} \Sigma_{x}^{t+1}(A) \tag{t}
\end{equation*}
$$

where the middle map is a left \mathcal{X}-approximation of $\Sigma^{t}(A)$, and $\Sigma_{X}^{0}(A):=A$. As before we may construct inductively a cotower of (morphisms of) triangles, henceforth denoted by (C_{\bullet}^{A}), $\forall t \geqslant 0$:
where we set: $\operatorname{Cell}^{0}(A):=X_{0}^{A}, \omega_{0}^{A}:=h_{0}^{A}, \beta_{0}^{A}:=f_{0}^{A}$, and $\gamma_{0}^{A}:=g_{0}^{A}$. The inverse tower of objects

$$
\cdots \longrightarrow \text { Cell }^{n+1}(A) \xrightarrow{\alpha_{n+1}^{A}} \text { Cell }^{n}(A) \xrightarrow{\alpha_{n}^{A}} \text { Cell }^{n-1}(A) \longrightarrow \cdots
$$

$$
\begin{equation*}
\cdots \longrightarrow \operatorname{Cell}^{2}(A) \xrightarrow{\alpha_{2}^{A}} \operatorname{Cell}^{1}(A) \xrightarrow{\alpha_{1}^{A}} \operatorname{Cell}^{0}(A)=A \tag{*}
\end{equation*}
$$

is called the cellular cotower of A with respect to X, and the cotower of objects

$$
\begin{gather*}
\cdots \longrightarrow \Sigma_{X}^{n+1}(A)[-n-1] \xrightarrow{h_{n}^{A}[-n]} \Sigma_{X}^{n}(A)[-n] \xrightarrow{h_{n-1}^{A}[-n+1]} \Sigma_{A}^{n-1}[-n+1] \\
\cdots \longrightarrow \Sigma_{X}^{2}(A)[-2] \xrightarrow{h_{1}^{A}[-1]} \Sigma_{X}^{1}(A)[-1] \xrightarrow{h_{0}^{A}} \Sigma_{A}^{0}=A \tag{A}
\end{gather*}
$$

is called the co-ghost cotower, or an Adams coresolution, of A with respect to \mathcal{X}.
Remark 2.3. By the construction of the cellular tower Cell. ${ }_{\text {. }}^{A}$ we have triangles, $\forall n \geqslant 1$:

$$
\begin{equation*}
X_{n}^{A}[-n] \longrightarrow \text { Cell }^{n}(A) \longrightarrow \text { Cell }^{n-1}(A) \longrightarrow X_{n}^{A}[-n+1] \tag{2.4}
\end{equation*}
$$

Since $\operatorname{Cell}^{0}(A)=X_{0}^{A} \in X$, it follows that we have a triangle $X_{1}^{A}[-1] \longrightarrow$ Cell $^{1}(A) \longrightarrow X_{0}^{A} \longrightarrow X_{1}^{A}$ and therefore Cell $^{1}(A) \in X[-1] \star X$. By induction it follows that:

$$
\operatorname{Cell}^{t}(A) \in X[-t] \star X[-t+1] \star \cdots \star X[-1] \star X, \quad \forall n \geqslant 0
$$

2.3. The functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$. We call an additive functor $F: \mathscr{A} \longrightarrow \mathscr{B}$ between additive categories \mathscr{A} and \mathscr{B} almost full if for any map $\alpha: F(A) \longrightarrow F(B)$ in \mathscr{B}, there are objects A^{*}, B^{*} in \mathscr{A} and maps $\alpha^{*}: A^{*} \longrightarrow B^{*}, \omega_{A}: A^{*} \longrightarrow A$ and $\omega_{B}: B^{*} \longrightarrow B$, such that the maps $F\left(\omega_{A}\right): F\left(A^{*}\right) \longrightarrow F(A)$ and $F\left(\omega_{B}\right): F\left(B^{*}\right) \longrightarrow F(B)$ are invertible and the following square commutes:

$$
\begin{array}{r}
F\left(A^{*}\right) \xrightarrow{F\left(\alpha^{*}\right)} F\left(B^{*}\right) \\
F\left(\omega_{A}\right) \downarrow \cong \\
F(A) \xrightarrow{\alpha} F\left(\omega_{B}\right) \downarrow \cong \\
F(B)
\end{array}
$$

Clearly F is full if and only if F is almost full and F is full on isomorphisms, i.e. any isomorphism g : $F(X) \longrightarrow F(Y)$ is of the form $F(f)$ for some map $f: X \longrightarrow Y$ in \mathscr{A}.

From now on the above notations will be used without further mentioning.
Now let as before X be a contravariantly finite subcategory of \mathcal{T} and assume that X is closed under direct summands and isomorphisms.

Lemma 2.4. Assume that $\mathcal{T}(X, X[1])=0$.
(i) $\forall A \in \mathcal{T}: \mathrm{H}\left(\Omega_{x}^{k}(A)[1]\right)=0, \forall k \geqslant 1$. Moreover the map $\mathrm{H}\left(\gamma_{A}^{1}\right): \mathrm{H}\left(\mathrm{Cell}_{1}(A)\right) \longrightarrow \mathrm{H}(A)$ is invertible.
(ii) The functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$ is almost full and essentially surjective.

Proof. (i) Applying the homological functor H to the triangle $\Omega_{x}^{k}(A) \longrightarrow X_{A}^{k-1} \longrightarrow \Omega_{x}^{k-1} A \longrightarrow \Omega_{x}^{k}(A)[1]$ and using that $\mathcal{T}(X, X[1])=0$, we see that $\mathrm{H}\left(\Omega_{X}^{k}(A)[1]\right)=0$. On the other hand since $\mathrm{H}\left(h_{A}^{0}\right)=0$, applying H to the triangle $\left(C_{A}^{1}\right): \Omega_{X}^{2}(A)[1] \longrightarrow \operatorname{Cell}_{1}(A) \xrightarrow{\gamma_{A}^{1}} A \xrightarrow{\omega_{A}^{1}} \Omega_{X}^{2}(A)[2]$ and using that $\mathrm{H}\left(\Omega_{X}^{k}(A)[1]\right)=0$ and $\mathrm{H}\left(\omega_{A}^{1}\right)=\mathrm{H}\left(h_{A}^{0}\right) \circ \mathrm{H}\left(h_{A}^{1}[1]\right)=0$, we infer that the map $\mathrm{H}\left(\gamma_{A}^{1}\right)$ is invertible.
(ii) Let $\mathrm{H}\left(X^{1}\right) \longrightarrow \mathrm{H}\left(X^{0}\right) \longrightarrow F \longrightarrow 0$ be a projective presentation of $F \in \bmod -X$. If $X^{1} \longrightarrow X^{0} \longrightarrow$ $A \longrightarrow X^{1}[1]$ is a triangle in \mathcal{T}, then applying H and using that $\mathcal{T}(X, X[1])=0$, we have that $\mathrm{H}(A)=F$, so H is
essentially surjective. Let $\alpha: \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ be a map in mod- X and let $\mathrm{H}\left(X_{A}^{1}\right) \longrightarrow \mathrm{H}\left(X_{A}^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$ and $\mathrm{H}\left(X_{B}^{1}\right) \longrightarrow \mathrm{H}\left(X_{B}^{0}\right) \longrightarrow \mathrm{H}(B) \longrightarrow 0$ be projective presentations of $\mathrm{H}(A)$ and $\mathrm{H}(B)$. Since $\mathrm{H} \mid x$ is full and $\mathrm{H}(X)=\operatorname{Proj} \bmod -X$, we get a map of projective presentations in mod- X

Using that $\mathrm{H} \mid X$ is faithful, we get a morphism of triangles

By the construction of the towers $\left(C_{A}^{\bullet}\right)$ and $\left(C_{B}^{\bullet}\right)$ we have: $\alpha_{A}^{1} \circ \gamma_{A}^{1}=f_{A}^{0}$ and $\alpha_{B}^{1} \circ \gamma_{B}^{1}=f_{B}^{0}$, and by part (i) the maps $\mathbf{H}\left(\gamma_{A}^{1}\right)$ and $\mathbf{H}\left(\gamma_{B}^{1}\right)$ are invertible. Consider the diagram:

where the left square is commutative. Then $\mathrm{H}\left(\alpha_{A}^{1}\right) \circ \mathrm{H}\left(\gamma_{A}^{1}\right) \circ \alpha=\mathrm{H}\left(f_{A}^{0}\right) \circ \alpha=\mathrm{H}(\beta) \circ \mathrm{H}\left(f_{B}^{0}\right)=\mathrm{H}(\beta) \circ \mathrm{H}\left(\alpha_{B}^{1}\right) \circ$ $\mathrm{H}\left(\gamma_{B}^{1}\right)=\mathrm{H}\left(\alpha_{A}^{1}\right) \circ \mathrm{H}\left(\alpha^{*}\right) \circ \mathrm{H}\left(\gamma_{B}^{1}\right)$. By Remark 2.2 the cone of α_{A}^{1} lies in $X[1]$, so $\mathrm{H}\left(\alpha_{A}^{1}\right)$ is an epimorphism. Then $\mathrm{H}\left(\gamma_{A}\right) \circ \alpha=\mathrm{H}\left(\alpha^{*}\right) \circ \mathrm{H}\left(\gamma_{B}^{1}\right)$ and the right square is commutative. Hence H is almost full.

3. Ghosts and Extensions

Let as before X be a contravariantly finite subcategory of \mathcal{T}. Our aim here is to analyze the structure of maps in \mathcal{T} which are invisible by the functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$, in the sense of the following definition.
Definition 3.1. A map $f: A \longrightarrow B$ in \mathcal{T} is called \mathcal{X}-ghost if $\mathcal{T}(X, f)=0$; equivalently $\mathrm{H}(f)=0$.
We let $\mathrm{Gh}_{x}(A, B)$ be the set of all \mathcal{X}-ghost maps between A and B. Clearly $\mathrm{Gh}_{x}(A, B)$ is a subgroup of $\mathcal{T}(A, B)$ and it is easy to see that in this way we obtain an ideal $\mathrm{Gh}_{x}(\mathcal{T})$ of \mathcal{T}. We denote by $\mathrm{Gh}_{x}^{[n]}(A, B)$ the subset of $\mathcal{T}(A, B)$ consisting of all maps $f: A \longrightarrow B$ which can be written as a composition $f=$ $f_{0} \circ f_{1} \circ \cdots \circ f_{n-1}$, where $f_{0}: A \longrightarrow B_{0}$ is \mathcal{X}-ghost, $f_{1}: B_{0} \longrightarrow B_{1}$ is $\mathcal{X}[1]$-ghost, $\cdots, f_{n-1}: B_{n-1} \longrightarrow B$ is $X[n-1]$-ghost. Hence $\mathrm{Gh}_{X}^{[n]}(\mathcal{T})$ is the product of ideals $\mathrm{Gh}_{X_{[i]}}(\mathcal{T}), 0 \leqslant i \leqslant n-1$:

$$
\mathrm{Gh}_{x}^{[n]}(\mathcal{T})=\mathrm{Gh}_{x}(\mathcal{T}) \circ \mathrm{Gh}_{X_{[1]}}(\mathcal{T}) \circ \mathrm{Gh}_{\left.X_{[2]}\right]}(\mathcal{T}) \circ \cdots \circ \mathrm{Gh}_{X_{[n-1]}}(\mathcal{T})
$$

Proposition 3.2 (The Ghost Lemma).
(i) For a map $f: A \longrightarrow B$ in \mathfrak{T}, the following are equivalent:
(a) $f \in \mathrm{Gh}_{x}^{[n]}(A, B)$.
(b) There exists a map $g: \Omega_{x}^{n}(A)[n] \longrightarrow B$ such that:

$$
f=(-1)^{n+1} h_{A}^{0} \circ h_{A}^{1}[1] \circ \cdots \circ h_{A}^{n-1}[n-1] \circ g=\omega_{A}^{n-1} \circ g
$$

(ii) Let A be an object in \mathfrak{T}, and consider the following statements:
(a) $\Omega_{X}^{n}(A) \in X$.
(b) $A \in X \star X[1] \star \cdots \star \mathcal{X}[n]$.
(c) $\mathrm{Gh}_{x}^{[n+1]}(A,-)=0$.

Then $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$. In particular: $\mathcal{T}=X \star X[1] \star \cdots \star X[n]$ if and only if $\mathrm{Gh}_{X}^{[n+1]}(\mathcal{T})=0$.
Proof. (i) Clearly if f is as in (b), then f lies in $\operatorname{Gh}_{X}^{[n]}(A, B)$, since by construction $h_{A}^{i}[i]$ is $X[i]$-ghost, $0 \leqslant i \leqslant n-1$, cf. (2.4). To show the converse, let $n=1$ and $f: A \longrightarrow B$ be \mathcal{X}-ghost. Then the composition $X_{A}^{0} \longrightarrow A \longrightarrow B$ is zero and therefore it factorizes through $h_{A}^{0}: A \longrightarrow \Omega_{X}^{1}(A)[1]$. If $n=2$ and $f: A \longrightarrow B$ lies in $\mathrm{Gh}_{X}^{[2]}(A, B)$, then f admits a factorization $f=f_{0} \circ f_{1}$, where $f_{0}: A \longrightarrow B_{0}$ is \mathcal{X}-ghost and $f_{1}: B_{0} \longrightarrow B$ is $X[1]$-ghost. Then there exists a map $g_{0}: \Omega_{X}^{1}(A)[1] \longrightarrow B_{0}$ such that $f_{0}=h_{A}^{0} \circ g_{0}$. Since f_{1} is $X[1]$-ghost,
so is $g_{0} \circ f_{1}$ and therefore its composition with the $\operatorname{map} X_{A}^{1}[1] \longrightarrow \Omega_{x}^{1}(A)[1]$ is zero. Hence there exists a $\operatorname{map} g: \Omega_{X}^{2}(A)[2] \longrightarrow B$ such that $\left(-h_{A}^{1}[1]\right) \circ g=g_{0} \circ f_{1}$. Then $f=f_{0} \circ f_{1}=h_{A}^{0} \circ g_{0} \circ f_{1}=h_{A}^{0} \circ\left(-h_{A}^{1}[1]\right) \circ g$. Hence $f=-\left(h_{A}^{0} \circ h_{A}^{1}[1]\right) \circ g=\omega_{A}^{1} \circ g$. The assertion for $n \geqslant 3$ follows by induction.
(ii) $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Since Cell ${ }_{n-1}(A)$ lies in $X \star X[1] \star \cdots \star X[n-1]$, it follows that if $\Omega_{X}^{n}(A)$ lies in X, then A lies in $X \star X[1] \star \cdots \star X[n]$ as follows from the triangle $\left(C_{A}^{n-1}\right)$ in the tower of triangles $\left(C_{A}^{\bullet}\right)$.
(b) \Leftrightarrow (c) If $n=0$, i.e. $A \in X$, then clearly $\operatorname{Gh}_{X}^{[1]}(A,-)=\operatorname{Gh}_{X}(A,-)=0$. Let $n=1$, so that $A \in X \star X[1]$, i.e. there is a triangle $X_{0} \xrightarrow{\alpha} A \xrightarrow{\beta} X_{1}[1] \longrightarrow X_{0}[1]$, where the X_{i} lie in X. Let f be in $\operatorname{Gh}_{X}^{[2]}(A, B)$, i.e. f admits a factorization $f=f_{0} \circ f_{1}$, where $f_{0}: A \longrightarrow B_{0}$ is \mathcal{X}-ghost and $f_{1}: B_{0} \longrightarrow B$ be $\mathcal{X}[1]$-ghost. Then $f_{0}=\beta \circ g$ for some $g: X_{1}[1] \longrightarrow B_{0}$. Since the composition $g \circ f_{1}: X_{1}[1] \longrightarrow B$ is X [1]-ghost, we have $g \circ f_{1}=0$. Then $f=f_{0} \circ f_{1}=\beta \circ g \circ f_{1}=0$. Hence $\operatorname{Gh}_{x}^{[2]}(A, B)=0$. For $n \geqslant 3$ the assertion follows by induction. Conversely if $\mathrm{Gh}_{X}^{[n+1]}(A,-)=0$, then the map $\omega_{A}^{n}=h_{A}^{0} \circ h_{A}^{1}[1] \circ \cdots \circ h_{A}^{n-1}[n-1] \circ h_{A}^{n}[n]$ lies in $\operatorname{Gh}_{X}^{[n+1]}\left(A, \Omega_{X}^{n+1}(A)[n]\right)$, and therefore $\omega_{A}^{n}=0$. This implies that A lies in $X \star X[1] \star \cdots \star X[n]$ as a direct summand of $\operatorname{Celll}_{n}(A) \in X \star X[1] \star \cdots \star \mathcal{X}[n]$.

Lemma 3.3. For any $t \geqslant 0$, the map $\gamma_{A}^{t}: \operatorname{Cell}_{t}(A) \longrightarrow A$ is a right $\mathcal{X} \star X[1] \star \cdots \star \mathcal{X}[t]$-approximation of A. In particular $X \star X[1] \star \cdots \star \mathcal{X}[t]$ is contravariantly finite in \mathcal{T}.

Proof. Consider the triangle $\left(C_{A}^{t+1}\right): \Omega_{X}^{t+1}(A)[t] \xrightarrow{\beta_{A}^{t}}$ Cell $_{t}(A) \xrightarrow{\gamma_{A}^{t}} A \xrightarrow{\omega_{A}^{t}} \Omega_{X}^{t+1}(A)[t+1]$. Let $g: C \longrightarrow A$ be a map, where C lies in $X \star X[1] \star \cdots X[t]$. Since the map ω_{A}^{t} lies in $\operatorname{Gh}_{X}^{[t+1]}\left(A, \Omega_{X}^{t+1}(A)[t+1]\right)$, it follows that $g \circ \omega_{A}^{t}$ lies in $\operatorname{Gh}_{X}^{[t+1]}\left(C, \Omega_{X}^{t+1}(A)[t+1]\right)$. Since $C \in X \star X[1] \star \cdots \star X[t]$, by the Ghost Lemma, we have $g \circ \omega_{A}^{t}=0$ and therefore g factorizes through Cell $t(A)$, i.e. γ_{A}^{t} is a right $(X \star X[1] \star \cdots \star X[t])$-approximation of A and $X \star X[1] \star \cdots \star X[t]$ is contravariantly finite in \mathcal{T}.

Lemma 3.4. For any objects $A, B \in \mathcal{T}$ and any $t \geqslant 1$, we have an equality:

$$
\operatorname{Gh}_{x}^{[t+1]}(A, B)=\operatorname{Gh}_{x \star x[1] * \cdots \star x_{[t]}}(A, B)
$$

Proof. If $f: A \longrightarrow B$ lies in $\operatorname{Gh}_{x \star x[1] * \ldots \star x[t]}(A, B)$, then the composition $\gamma_{A}^{t} \circ f$ is zero since Cell ${ }_{t}(A) \in$ $X \star X[1] \star \cdots \star X[t]$. Hence f factorizes through $\omega_{A}^{t}: A \longrightarrow \Omega_{X}^{t+1}(A)[t+1]$, say as $f=\omega_{A}^{t} \circ g$. Since ω_{A}^{t} lies in $\operatorname{Gh}_{x}^{[t+1]}\left(A, \Omega_{x}^{t+1}(A)[t+1]\right), f$ lies in $\operatorname{Gh}_{x}^{[t+1]}(A, B)$. Hence $\operatorname{Gh}_{x * x[1] * \cdots * x[t]}(A, B) \subseteq \operatorname{Gh}_{x}^{[t+1]}(A, B)$. Conversely if f lies in $\mathrm{Gh}_{x}^{[t+1]}(A, B)$, then by the Ghost Lemma we have $f=\omega_{A}^{t} \circ g$ for some $g: \Omega_{X}^{t+1}(A)[t+1] \longrightarrow B$. This implies that $\gamma_{A}^{t} \circ f=0$. Since, by Lemma 3.3, γ_{A}^{t} is a right $X \star X[1] \star \cdots \star X[t]$-approximation of A, we have $\mathcal{T}(C, f)=0, \forall C \in X \star X[1] \star \cdots \star X[t]$, so f lies in $G_{X \star X[1] \star \cdots \star X[t]}(A, B)$. The last assertion is clear.

Remark 3.5. For any integer $n \geqslant 1$, we define $\operatorname{Gh}_{x}^{[-n]}(A, B)$ to be the subgroup of $\mathcal{T}(A, B)$ consisting of all maps $f: A \longrightarrow B$ which can be written as a composition $f=f_{-n+1} \circ f_{-n+2} \circ \cdots \circ f_{-1} \circ f_{0}$, where $f_{-i}: B_{-i-1} \longrightarrow B_{-i}$ is $X[-i]$-ghost, $A=B_{-n}$ and $B_{0}=B$. Clearly then the map

$$
\operatorname{Gh}_{x}^{[-n]}(A, B) \longrightarrow \operatorname{Gh}_{x}^{[n]}(A[n-1], B[n-1]), \quad f \longrightarrow f[n-1]
$$

is an isomorphism. It follows from Lemma 3.4 that we have an isomorphism $\operatorname{Gh}_{X[-n] \star \cdots \star x[-1] * x}(A, B) \cong$ $\mathrm{Gh}_{X \star X[1] \star \cdots \star X[n]}(A[n], B[n])$.

Clearly if $X \subseteq y$, then $\mathrm{Gh}_{y}(A, B) \subseteq \mathrm{Gh}_{x}(A, B)$. Hence the increasing filtration by subcategories of \mathcal{T}

$$
\begin{equation*}
X \subseteq X \star X[1] \subseteq X \star X[1] \star X[2] \subseteq \cdots \subseteq X \star X[1] \star \cdots \star X[t] \subseteq \cdots \subseteq \mathcal{T} \tag{3.1}
\end{equation*}
$$

induces a decreasing filtration of its Hom-functor of \mathcal{T} by ghost ideals:

$$
\begin{equation*}
\cdots \subseteq \mathrm{Gh}_{x}^{[t+1]}(\mathcal{T}) \subseteq \cdots \subseteq \mathrm{Gh}_{x}^{[2]}(\mathcal{T}) \subseteq \mathrm{Gh}_{x}(\mathcal{T}) \subseteq \mathcal{T}(-,-) \tag{3.2}
\end{equation*}
$$

By the Ghost Lemma it follows that the above filtrations have the same length.
Proposition 3.6. Let X be a contravariantly finite subcategory of \mathcal{T}. Then there exists an exact sequence

$$
0 \longrightarrow \mathrm{Gh}_{x}(A, B) \longrightarrow \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}[\mathrm{H}(A), \mathrm{H}(B)] \longrightarrow \mathrm{Gh}_{x}\left(\Omega_{x}^{1}(A), B\right) \longrightarrow \mathrm{Gh}_{x}^{[2]}(A, B[1]) \longrightarrow 0
$$

for any objects $A, B \in \mathcal{T}$, where $\mathrm{H}_{A, B}: \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(B))$ is the canonical map.

Proof. We construct maps

$$
\vartheta_{A, B}: \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(B)) \longrightarrow \mathrm{Gh}_{x}\left(\Omega_{x}^{1}(A), B\right) \quad \text { and } \quad \zeta_{A, B}: \mathrm{Gh}_{x}\left(\Omega_{x}^{1}(A), B\right) \longrightarrow \mathrm{Gh}_{x}^{[2]}(A, B[1])
$$

as follows. Let $\alpha: \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ be a map and consider the triangle $\Omega_{X}^{1}(A) \longrightarrow X_{A}^{0} \longrightarrow A \longrightarrow \Omega_{X}^{1}(A)[1]$. Then we have an exact sequence $\mathrm{H}\left(\Omega_{x}^{1}(A)\right) \longrightarrow \mathrm{H}\left(X_{A}^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$ in mod- X. Then the composition $\mathrm{H}\left(f_{A}^{0}\right) \circ \alpha: \mathrm{H}\left(X_{A}^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ is of the form $\mathrm{H}\left(\alpha^{*}\right)$ for a unique map $\alpha^{*}: X_{A}^{0} \longrightarrow B$. Define $\vartheta_{A, B}(\alpha)=g_{A}^{0} \circ \alpha^{*}: \Omega_{X}^{1}(A) \longrightarrow B$. Clearly $g_{A}^{0} \circ \alpha^{*}$ is $X_{\text {-ghost since }} \mathrm{H}\left(g_{A}^{0} \circ \alpha^{*}\right)=\mathrm{H}\left(g_{A}^{0}\right) \circ \mathrm{H}\left(\alpha^{*}\right)=\mathrm{H}\left(g_{A}^{0}\right) \circ$ $\mathrm{H}\left(f_{A}^{0}\right) \circ \alpha=0$. Now in $\alpha \in \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(B))$ lies in $\operatorname{Ker} \vartheta_{A, B}$, then $\vartheta_{A, B}(\alpha)=g_{A}^{0} \circ \alpha^{*}=0$, then $\alpha^{*}=f_{A}^{0} \circ \beta$ for some map $\beta: A \longrightarrow B$ and then $\mathrm{H}\left(f_{A}^{0}\right) \circ \alpha=\mathrm{H}\left(\alpha^{*}\right)=\mathrm{H}\left(f_{A}^{0}\right) \circ \mathrm{H}(\beta)$ and therefore $\alpha=\mathrm{H}(\beta)$. Conversely if $\alpha=\mathrm{H}(\beta)$, for some map $\beta: A \longrightarrow B$, then $\alpha^{*}=f_{A}^{0} \circ \beta$ and then $\vartheta_{A, B}(\alpha)=g_{A}^{0} \circ \alpha^{*}=g_{A}^{0} \circ f_{A}^{0} \circ \beta=0$.
 clearly $X[-1]$-ghost and α is \mathcal{X}-ghost, it follows by the above Lemma that $h_{A}^{0}[-1] \circ \alpha \in \operatorname{Gh}_{X[-1] \star} \mathcal{X}(A[-1], B)$, hence by Remark 3.5, we have a map $\zeta_{A, B}: \operatorname{Gh} x\left(\Omega_{x}(A), B\right) \longrightarrow \operatorname{Gh}_{X}^{[2]}(A, B[1]), \alpha \longmapsto \zeta_{A, B}(\alpha)=h_{A}^{0} \circ \alpha[1]$. We show that $\zeta_{A, B}$ is surjective. Let $\alpha: A \longrightarrow B[1]$ be a map in $\operatorname{Gh}_{x}^{[2]}(A, B[1])$, so $\alpha=\beta \circ \gamma$, where $\beta \in \operatorname{Gh}_{X}(A, C)$ and $\gamma \in \operatorname{Gh}_{X[1]}(C, B[1])$. By the Ghost Lemma, $\beta=h_{A}^{0} \circ \rho$, for some map $\rho: \Omega_{X}^{1}(A)[1] \longrightarrow C$. Then the map $(\rho \circ \gamma)[-1]: \Omega_{X}^{1}(A) \longrightarrow B$ is \mathcal{X}-ghost and $\zeta_{A, B}((\rho \circ \gamma)[-1])=\alpha$, so $\zeta_{A, B}$ is surjective. Finally
 Then $\beta=g_{A}^{0} \circ \gamma$, for some map $\gamma: X_{A}^{0} \longrightarrow B$. Since $0=\mathrm{H}(\beta)=\mathrm{H}\left(g_{A}^{0}\right) \circ \mathrm{H}(\gamma)$, there exists a unique map $\alpha: \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ such that $\mathrm{H}\left(f_{A}^{0}\right) \circ \alpha=\mathrm{H}(\gamma)$. It follows that $\vartheta_{A, B}(\alpha)=g_{A}^{0} \circ \gamma=\beta$, i.e. $\operatorname{Ker} \zeta_{A, B} \subseteq \operatorname{Im} \vartheta_{A, B}$. Finally if $\delta: \Omega_{X}^{1}(A) \longrightarrow B$ is in the image of $\vartheta_{A, B}$, then $\delta=g_{A}^{0} \circ \delta^{*}$ for some map $\delta^{*}: X_{A}^{0} \longrightarrow B$. Plainly $\zeta_{A, B}(\delta)=h_{A}^{0} \circ g_{A}^{0}[1] \circ \delta^{*}[1]=0$, i.e. $\delta \in \operatorname{Ker} \zeta_{A, B}$. Hence $\operatorname{Ker} \zeta_{A, B}=\operatorname{Im} \vartheta_{A, B}$ and the sequence is exact.

We say that a map $\alpha: \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ is realizable (with respect to H), if $\alpha=\mathrm{H}\left(\alpha^{*}\right)$ for some map $\alpha^{*}: A \longrightarrow B$. The obstruction group $\mathcal{O}_{A, B}$ of the objects $A, B \in \mathcal{T}$ is defined as the cokernel of the natural map $\mathrm{H}_{A, B}: \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}\left(\mathrm{H}(A), \mathrm{H}(B)\right.$. Clearly $\mathcal{O}_{A, B}=0$ if and only if any map $\mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ is realizable, and $\mathcal{O}_{A, B}=0, \forall A, B \in \mathcal{T}$, if and only if H is full.

Corollary 3.7. Let \mathcal{X} be a contravariantly finite subcategory of \mathcal{T}. If $\mathcal{T}(X, X[1])=0$, then $\forall A \in X \star X[1]$ we have $\mathcal{O}_{A, B}=0, \forall B \in \mathcal{T}$, i.e. there is an exact sequence:

$$
0 \longrightarrow \mathrm{Gh}_{x}(A, B) \longrightarrow \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}[\mathrm{H}(A), \mathrm{H}(B)] \longrightarrow 0
$$

Moreover the functor H induces an equivalence: $(X \star X[1]) / X[1] \xrightarrow{\approx} \bmod -X$.
Proof. If $A \in X_{\star} X[1]$, then there is a triangle $X_{1} \longrightarrow X_{0} \longrightarrow A \longrightarrow X_{1}[1]$, where $X_{i} \in X$. Since $\mathcal{T}(X, X[1])=$ 0 , the map $X_{0} \longrightarrow A$ is a right X-approximation, hence $X_{1}=\Omega_{X}^{1}(A)$. It follows that $\operatorname{Gh}_{X}\left(\Omega_{X}^{1}(A),-\right)=0$ and then by Proposition 3.6, the map $\mathrm{H}_{A, B}: \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}[\mathrm{H}(A), \mathrm{H}(B)]$ is surjective, $\forall B \in \mathcal{T}$. In particular $\mathrm{H}: X \star X[1] \longrightarrow \bmod -\mathcal{X}$ is full. If $\alpha: A \longrightarrow B$ is \mathcal{X}-ghost, then by the Ghost Lemma, α factorizes through $h_{A}^{1}: A \longrightarrow \Omega_{x}^{1}(A)[1]$. Since $\Omega_{x}^{1}(A)[1]=X_{1}[1]$, we infer that $G h(A, B)$ is the subgroup of all maps factorizing through an object from $X[1]$. Finally let $F=\mathrm{H}(A)$ be in mod- X and consider the triangle $\left(C_{A}^{1}\right): \Omega_{X}^{2}(A)[1] \xrightarrow{\beta_{A}^{1}} \operatorname{Cell}_{1}(A) \xrightarrow{\gamma_{A}^{1}} A \xrightarrow{\omega_{A}^{1}} \Omega_{X}^{2}(A)[2]$. Since $\mathcal{T}(X, X[1])=0$, we have $H\left(\Omega_{X}^{2}(A)[1]\right)=0$ and since ω_{A}^{1} is X-ghost, we have $\mathrm{H}\left(\omega_{A}^{1}\right)=0$. Hence the map $\mathrm{H}\left(\gamma_{A}^{1}\right): \mathrm{H}\left(\right.$ Cell $\left._{1}(A)\right) \longrightarrow \mathrm{H}(A)$ is invertible, i.e. $\mathrm{H}: X \star X[1] \longrightarrow \bmod -X$ is surjective on objects.

Proposition 3.8. Let X be a contravariantly finite subcategory of \mathcal{T}. Then for any object $A \in \mathcal{T}$ such that $\mathcal{T}(X, A[-1])=0$, there exists a 7 -term exact sequence:

$$
\begin{gather*}
0 \longrightarrow \mathrm{Gh}_{x}(A, B) \longrightarrow \mathcal{T}(A, B) \xrightarrow{\mathrm{H}_{A, B}} \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\vartheta_{A, B}} \mathrm{Gh}_{x}\left(\Omega_{x}(A), B\right) \xrightarrow{\eta_{A, B}} \\
\operatorname{Gh}_{x}(A, B[1]) \xrightarrow{\xi_{A, B}} \mathrm{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B)) \longrightarrow \mathcal{O}_{\Omega_{x}(A), B} \longrightarrow 0 \tag{3.3}
\end{gather*}
$$

where $\operatorname{Im}\left(\vartheta_{A, B}\right)=\mathcal{O}_{A, B} \quad$ and $\quad \operatorname{Im}\left(\eta_{A, B}\right) \cong \operatorname{Gh}_{x}^{[2]}(A, B[1])$.
Proof. Applying H to the triangle $\Omega_{x}(A) \longrightarrow X_{A}^{0} \longrightarrow A \longrightarrow \Omega_{x}(A)[1]$ and using that $\mathrm{H}(A[-1])=0$, we have an exact sequence $0 \longrightarrow \mathrm{H}\left(\Omega_{X}(A)\right) \longrightarrow \mathrm{H}\left(X_{A}^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$ and an exact commutative diagram

and we know that $\operatorname{Ker}_{A, B}=\operatorname{Gh}(A, B)$, Coker $\mathrm{H}_{A, B}=\mathcal{O}_{A, B}$, and $\operatorname{Ker} \mathrm{H}_{\Omega_{x}(A), B}=\operatorname{Gh}_{x}\left(\Omega_{x}(A)\right.$, $\left.B\right)$, and Coker $\mathrm{H}_{\Omega_{x}(A), B}=\mathcal{O}_{\Omega_{x}(A), B}$. Moreover the above diagram induces an exact sequence:

$$
0 \longrightarrow \mathcal{O}_{A, B} \longrightarrow \operatorname{Gh}_{x}\left(\Omega_{x}(A), B\right) \longrightarrow \operatorname{Im} \mathcal{T}\left(h_{A}^{0}[-1], B\right) \xrightarrow{\phi} \operatorname{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B)) \longrightarrow \text { Coker } \phi \longrightarrow 0
$$

By chasing the above diagram we see easily that Coker $\phi \cong$ Coker $\mathrm{H}_{\Omega_{x}(A), B}=\mathcal{O}_{\Omega_{x}(A), B}$ and $\operatorname{Im} \mathcal{T}\left(h_{A}^{0}[-1], B\right)$ $=\operatorname{Gh}_{x[-1]}(A[-1], B)$ and $\operatorname{Ker} \phi=\operatorname{Gh}_{x[-1] \star x}(A[-1], B)$. Since, by Remark 3.5, we have isomorphisms: $\operatorname{Gh}_{x[-1]}(A[-1], B) \cong \operatorname{Gh}_{x}(A, B[1])$ and $\operatorname{Gh}_{x[-1] * x}(A[-1], B) \cong \operatorname{Gh}_{x}^{[-2]}(A[-1], B) \cong \operatorname{Gh}_{x}^{[2]}(A, B[1]),(3.3)$ follows by splicing the above exact sequence with the exact sequence of Proposition 3.6.
Corollary 3.9. Let \mathcal{X} be a contravariantly finite subcategory of \mathcal{T}, and assume that $\mathcal{T}(X, A[-1])=0$.
(i) If $\Omega_{X}^{2}(A) \in X$, then, $\forall B \in \mathcal{T}$, there is an isomorphism

$$
\mathrm{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \frac{\mathrm{Gh}_{x}(A, B[1])}{\mathrm{Gh}_{x}^{2}(A, B[1])}
$$

(ii) If $A \in \mathcal{X} \star \mathcal{X}[1]$ and $\mathcal{T}(X, X[1])=0$, then, $\forall B \in \mathcal{T}$, there is an isomorphism:

$$
\operatorname{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \mathrm{Gh}_{x}(A, B[1])
$$

(iii) If $A, B \in \mathcal{X} \star \mathcal{X}[1]$ and $\mathcal{T}(X, X[1])=0=\mathcal{T}(X, X[2])$, then there is an isomorphism:

$$
\operatorname{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \mathcal{T}(A, B[1])
$$

Proof. (i) Since $\Omega_{X}^{2}(A) \in X$, it follows that $\Omega_{X}^{1}(A) \in X \star X[1]$. Then by Corollary 3.7 we have $\mathcal{O}_{\Omega_{X}^{1}(A), B}=0$, $\forall B \in \mathcal{T}$, and the assertion follows from (3.3).
(ii), (iii) If $A \in X \star X[1]$ and $\mathcal{T}(X, X[1])=0$, then $\Omega_{X}(A) \in X$. Hence $\operatorname{Gh}_{X}\left(\Omega_{X}^{1}(A), B\right)=0=\mathcal{O}_{\Omega_{x}^{1}(A), B}$ and the map $\operatorname{Gh}_{X}(A, B[1]) \longrightarrow \operatorname{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B))$ is invertible. Finally assume that in addition $\mathcal{T}(X, X[2])=0$ and $B \in \mathcal{X} \star \mathcal{X}[1]$. Then there exists a triangle $X^{1} \longrightarrow X^{0} \longrightarrow B \longrightarrow X^{1}[1]$ where the X^{j} lie in X. Applying H and using that $\mathcal{T}(X, X[i])=0,1 \leqslant i \leqslant 2$, it follows that $\mathrm{H}(B[1])=0$. In particular any map $A \longrightarrow B[1]$ is \mathcal{X}-ghost. Hence by (ii), $\operatorname{Gh}_{X}(A, B[1]) \cong \mathcal{T}(A, B[1])$ and (iii) follows from (ii).

Corollary 3.10. Let X be a contravariantly finite subcategory of \mathcal{T}. Let $t \geqslant 2$ and assume that $\mathcal{T}(X, X[-i])=$ $0,1 \leqslant i \leqslant t-1$. Then for any $A \in \mathcal{T}$ such that $\mathcal{T}(\mathcal{X}, A[-i])=0,1 \leqslant i \leqslant t$, and any object $B \in \mathcal{T}$, there exists an exact sequence, $1 \leqslant i \leqslant t-1$:

$$
\begin{gather*}
0 \longrightarrow \operatorname{Gh}_{x}\left(\Omega_{x}^{i}(A), B\right) \longrightarrow \mathcal{T}\left(\Omega_{x}^{i}(A), B\right) \longrightarrow \operatorname{Hom}\left(\mathrm{H}\left(\Omega_{x}^{i}(A)\right), \mathrm{H}(B)\right) \longrightarrow \operatorname{Gh}_{x}\left(\Omega_{x}^{i+1}(A), B\right) \longrightarrow \\
\operatorname{Gh}_{x}\left(\Omega_{x}^{i}(A), B[1]\right) \longrightarrow \mathrm{Ext}^{i+1}(\mathrm{H}(A), \mathrm{H}(B)) \longrightarrow \mathcal{O}_{\Omega_{x}^{i+1}(A), B} \longrightarrow 0 \tag{3.4}
\end{gather*}
$$

Proof. Applying the functor H to the triangles $\Omega_{x}^{i}(A) \longrightarrow X_{A}^{i-2} \longrightarrow \Omega_{x}^{i-1}(A) \longrightarrow \Omega^{i}(A)[1], i \geqslant 0$, and using the vanishing conditions of the statement, we see easily that we have $\mathcal{T}\left(X, \Omega_{x}^{k}(A)[-t+k]\right)=0,1 \leqslant k \leqslant t-1$. As consequence we have short exact sequences $0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{k}(A)\right) \longrightarrow \mathrm{H}\left(X_{A}^{k-1}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{k-1}(A)\right) \longrightarrow 0$, $1 \leqslant k \leqslant t$, so $\Omega^{k} \mathrm{H}(A) \cong \mathrm{H}\left(\Omega_{X}^{k}(A)\right), 1 \leqslant k \leqslant t$. Since $\mathcal{T}\left(X, \Omega_{X}^{k}(A)[-1]\right)=0,1 \leqslant k \leqslant t-1$, the existence of (3.4) follows from Proposition 3.8, by replacing A with $\Omega_{x}^{i}(A)$.

Lemma 3.11. For any objects $A, B \in \mathcal{T}$ and any $k \geqslant 0$, there is an epimorphism:

$$
\varphi_{A, B}^{k}: \operatorname{Gh}_{x}\left(\Omega_{X}^{k}(A), B[1]\right) \longrightarrow \operatorname{Gh}_{X}^{[k+1]}(A, B[k+1]) \longrightarrow 0
$$

which is an isomorphism for $0 \leqslant k \leqslant n$, if $\mathcal{T}(\mathcal{X}, B[i])=0,1 \leqslant i \leqslant n$. In this case we have a isomorphisms

$$
\varphi_{A, B}^{k}: \mathcal{T}\left(\Omega_{X}^{k}(A), B[1]\right) \xrightarrow{\cong} \mathcal{T}(A, B[k+1]) \quad \text { and } \quad \varphi_{A, B}^{n}: \mathcal{T}\left(\Omega_{X}^{n}(A), B[1]\right) \xrightarrow{\cong} \operatorname{Gh}_{x}^{n+1}(A, B[n+1])
$$

for $1 \leqslant k \leqslant n$. In particular we have a monomorphism $0 \longrightarrow \mathcal{T}\left(\Omega_{x}^{n}(A), B[1]\right) \longrightarrow \mathcal{T}(A, B[n+1])$.
Proof. Define $\varphi_{A, B}^{k}(\alpha)=\omega_{A}^{k-1} \circ \alpha[k]$. Since ω_{A}^{k-1} lies in $\operatorname{Gh}_{x}^{k}\left(A, \Omega_{X}^{k}(A)[k]\right)$ and since $\alpha[k]$ is $X[k]$-ghost, it follows that $\varphi_{A, B}^{k}(\alpha)$ lies in $\operatorname{Gh}_{x}^{k+1}(A, B[k+1])$. Now if $\beta: A \longrightarrow B[k+1]$ lies in $\operatorname{Gh}_{x}^{k+1}(A, B[k+1])$, by the Ghost Lemma, there exists a map $\gamma: \Omega_{x}^{k+1}(A) \longrightarrow B[k+1]$ such that $\beta=\omega_{A}^{k} \circ \gamma=\omega_{A}^{k-1} \circ h_{A}^{k}[k] \circ \gamma$. Clearly the map $h_{A}^{k} \circ \gamma[-k]: \Omega_{x}^{k}(A) \longrightarrow B[1]$ is X-ghost and $\varphi_{A, B}^{k}\left(h_{A}^{k} \circ \gamma[-k]\right)=\omega_{A}^{k-1} \circ h_{A}^{k}[k] \circ \gamma=$ $\omega_{A}^{k} \circ \gamma=\beta$, so $\varphi_{A, B}^{k}(\alpha)$ is surjective. Assume now that $\mathcal{T}(\mathcal{X}, B[i])=0,1 \leqslant i \leqslant n$ and let $\alpha \in \operatorname{Ker} \varphi_{A, B}^{k}$, where $1 \leqslant k \leqslant n$. Then $\omega_{A}^{k-1} \circ \alpha[k]=0$ and therefore $\alpha[k]$ factorizes through the cone $\operatorname{Cell}_{k-1}(A)[1]$ of ω_{A}^{k-1}. Since Cell $_{k-1}(A)[1]$ lies in $(X \star X[1] \star \cdots X[k-1])[1]=X[1] \star \cdots \star X[k]$, it is easy to see that the condition $\mathcal{T}(X, B[i])=0,1 \leqslant i \leqslant k$ forces any map from an object in $X[1] \star \cdots \star \mathcal{X}[k]$ to $B[k+1]$ to be
zero. Hence $\alpha[k]$ or equivalently α is zero. We infer that $\varphi_{A, B}^{k}$ is injective for $0 \leqslant k \leqslant n$. Now observe that, since $\mathcal{T}(X, B[1])=0$, we have $\operatorname{Gh}_{X}\left(\Omega_{X}^{k}(A), B[1]\right)=\mathcal{T}\left(\Omega_{X}^{k}(A), B[1]\right), \forall k \geqslant 0$. We show by induction on k that $\operatorname{Gh}_{X}^{[k]}(A, B[k])=\mathcal{T}(A, B[k]), 1 \leqslant k \leqslant n$. Indeed if $k=1$, then any map $\alpha: A \longrightarrow B[1]$ is X-ghost since $\mathcal{T}(X, B[1])=0$. If $k=2$ and $\alpha: A \longrightarrow B[2]$ is a map, then since $\mathcal{T}(X, B[2])=0$, the composition $X_{A}^{0} \longrightarrow A \longrightarrow B[2]$ is zero and therefore $\alpha=h_{A}^{0} \circ \alpha_{1}$ for some map $\alpha_{1}: \Omega_{X}^{1}(A)[1] \longrightarrow B[2]$. Clearly α_{1} is $X[1]$-ghost since $\mathcal{T}(X, B[1])=0$. Hence α lies in $\operatorname{Gh}_{X}^{[2]}(A, B[2])$ and therefore $\mathrm{Gh}_{X}^{[2]}(A, B[2])=\mathcal{T}(A, B[2])$. Continuing in this way and using that $k \leqslant n$, we see that any map $\alpha: A \longrightarrow B[k+1]$ admits a factorization $\alpha=\omega_{A}^{k} \circ \alpha_{k+1}[k]$ for some map $\alpha_{k+1}: \Omega_{X}^{k+1}(A)[1] \longrightarrow B[1]$. It follows that α lies in $\operatorname{Gh}_{x}^{[k+1]}(A, B[k+1])$ and therefore $\mathrm{Gh}_{X}^{[k+1]}(A, B[k+1])=\mathcal{T}(A, B[k+1]$ for $0 \leqslant k \leqslant n$.
Corollary 3.12. Let \mathcal{X} be a contravariantly finite subcategory of \mathcal{T}. Let $t \geqslant 2$ and assume that $\mathcal{T}(\mathcal{X}, \mathcal{X}[-i])=$ $0,1 \leqslant i \leqslant t-1$, and $\mathcal{T}(\mathcal{T}(X, X[i])=0,1 \leqslant i \leqslant t$. Let $A \in \mathcal{T}$ be such that: $A \in X \star \mathcal{X}[1] \star \cdots \star \mathcal{X}[t]$ and $\mathcal{T}(X, A[-i])=0,1 \leqslant i \leqslant t$. Then $\forall B \in \mathcal{T}$, we have $\operatorname{Ext}^{t+1}(\mathrm{H}(A), \mathrm{H}(B))=0$, so $\mathrm{pd} \mathrm{H}(A) \leqslant t$, and:

$$
\operatorname{Ext}^{t}(\mathrm{H}(A), \mathrm{H}(B)) \stackrel{\cong}{\Longrightarrow} \operatorname{Gh}_{x}\left(\Omega_{x}^{t-1}(A), B[1]\right) \quad \text { and } \quad \mathrm{Ext}^{t-1}(\mathrm{H}(A), \mathrm{H}(B)) \stackrel{\cong}{\Longrightarrow} \frac{\mathrm{Gh}_{x}\left(\Omega_{x}^{t-2}(A), B[1]\right)}{\mathrm{Gh}_{x}^{[2]}\left(\Omega_{x}^{t-2}(A), B[1]\right)}
$$

If in addition $\mathcal{T}(X, B[1])=\cdots=\mathcal{T}(X, B[t-1])=0$, then: $\quad \operatorname{Ext}^{t}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \operatorname{Gh}_{X}^{[t]}(A, B[t])$.
Proof. The assumptions on A imply easily that $\Omega_{x}^{t}(A) \in X$, see Proposition 4.3(iii) below. Then $\Omega_{x}^{t-1}(A) \in$ $X \star X[1]$, and therefore we have $\mathcal{O}_{\Omega_{x}^{k}(A),-}=0$, for $k=t, t-1$, and $\operatorname{Gh}_{X}\left(\Omega_{X}^{t}(A),-\right)=0$. It follows from (3.4), for $i=t$, that $\operatorname{Ext}^{t+1}(\mathrm{H}(A), \mathrm{H}(B)=0$. Next setting $i=t-1$ in (3.4), we have the first isomorphism, and setting $i=t-2$ in (3.4) we have the second isomorphism. Finally if $\mathcal{T}(\mathcal{X}, B[i])=0,1 \leqslant i \leqslant t-1$, Corollary 3.11 shows that $\mathrm{Gh}_{x}\left(\Omega_{X}^{t-1}(A), B[1]\right) \cong \mathrm{Gh}_{x}^{[t]}(A, B[t]$ and therefore the last isomorphism follows.

4. Rigid Subcategories

Throughout this section we fix a triangulated category \mathcal{T} and a contravariantly finite subcategory X of \mathcal{T} which is closed under direct summands and isomorphisms.

For $n \geqslant 1$, we consider the following subcategories associated to X :

$$
X_{n}^{\top}:=\{A \in \mathcal{T} \mid \mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n\} \quad \text { and } \quad{ }_{n}^{\top} X:=\{A \in \mathcal{T} \mid \mathcal{T}(A, X[i])=0,1 \leqslant i \leqslant n\}
$$

We also set: $\quad X^{\top}:=X_{0}^{\top}=\{A \in \mathcal{T} \mid \mathcal{T}(X, A)=0\}$ and ${ }^{\top} X:={ }_{0}^{\top} X=\{A \in \mathcal{T} \mid \mathcal{T}(A, X)=0\}$.
Observe that $X^{\top}=X_{0}^{\top}=X_{1}^{\top}[1]$ and ${ }^{\top} X={ }_{0}^{\top} X=\left({ }_{1}^{\top} X\right)[-1]$, and we have filtrations:

$$
\begin{gather*}
\mathcal{T} \supseteq X_{1}^{\top} \supseteq X_{2}^{\top} \supseteq \cdots \supseteq X_{n}^{\top} \supseteq \cdots \tag{4.1}\\
X \subseteq X \star X[1] \subseteq \cdots \subseteq X \star X[1] \star \cdots \star X[n] \subseteq \cdots \subseteq \mathcal{T} \tag{4.2}
\end{gather*}
$$

Definition 4.1. A full subcategory $\mathcal{X} \subseteq \mathcal{T}$ is called n-rigid, $n \geqslant 1$, if: $\mathcal{T}(X, X[i])=0,1 \leqslant i \leqslant n$.
It follows that that X is n-rigid if and only if $X \subseteq X_{n}^{\top}$ or equivalently $X \subseteq{ }_{n}^{\top} X$. We show that that contravariantly finite n-rigid subcategories in \mathcal{T} give rise to torsion pairs in the sense of the following definition, see [12], [16]. A pair (X, y) of full subcategories of \mathcal{T} is called a torsion pair in \mathcal{T}, if $\mathcal{T}(X, y)=0$ and for any object A in \mathcal{T} there is a triangle $X_{A} \longrightarrow A \longrightarrow Y^{A} \longrightarrow X_{A}[1]$, where $X_{A} \in X$ and $Y^{A} \in \mathcal{y}$. A triple (X, y, z) of subcategories of \mathcal{T} is called a torsion triple if (X, y) and (y, z) are torsion pairs.

If (X, y) is a torsion pair in \mathcal{T}, then clearly the map $X_{A} \longrightarrow A$ is a right \mathcal{X}-approximation of A, and the map $A \longrightarrow Y^{A}$ is a left y-approximation of A. Hence X is contravariantly finite and y is covariantly finite in \mathcal{T}. Moreover it is easy to see that $X^{\top}=y$ and ${ }^{\top} y=x$, and $x \cap y=0$.

Proposition 4.2. If X is n-rigid, $n \geqslant 1$, then we have the following.
(i) $\Omega_{X}^{t}(A) \in X_{1}^{\top}, t \geqslant 1$, and $\Omega_{x}^{t}(A) \in X_{t}^{\top}, 1 \leqslant t \leqslant n$.
(ii) $\mathrm{H}(X[1] \star X[2] \cdots \star \mathcal{X}[n])=0$ and there is a torsion pair

$$
\begin{equation*}
\left(X \star X[1] \star X[2] \star \cdots \star X[t-1], X_{t}^{\top}[t]\right), \quad 1 \leqslant t \leqslant n \tag{*}
\end{equation*}
$$

The map $\gamma_{A}^{t-1}: \operatorname{Cell}_{t-1}(A) \longrightarrow A$ is a right $(X \star X[1] \star \cdots \star X[t-1])$-approximation of A, the map $\mathrm{H}\left(\gamma_{A}^{t-1}\right)$ is invertible, and the map $\omega_{A}^{t-1}: A \longrightarrow \Omega_{X}^{t}(A)[t]$ is a left $X_{t}^{\top}[t]$-approximation of A.
(iii) $\forall t=1,2, \cdots, n: \quad \Omega_{x}^{t}(A) \in X$ if and only if $A \in X \star X[1] \star \cdots \star X[t]$.

Proof. (i) Consider the triangles associated to A constructed before:

$$
\begin{equation*}
\Omega_{x}^{t}(A) \longrightarrow X_{A}^{t-1} \longrightarrow \Omega_{x}^{t-1}(A) \longrightarrow \Omega_{x}^{t}(A)[1] \tag{A}
\end{equation*}
$$

Applying the homological functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$ to the triangles $\left(T_{A}^{t}\right)$ and using that X is n-rigid, it follows that $\mathrm{H}\left(\Omega_{x}^{t}(A)[1]\right)=0, \forall t \geqslant 1$, and $\mathrm{H}\left(\Omega_{x}^{t}(A)[i]\right) \cong \mathrm{H}\left(\Omega_{x}^{t+1}(A)[i+1]\right)$, for $1 \leqslant t \leqslant n-1$ and $1 \leqslant i \leqslant n-1$. Hence for any $t=1,2, \cdots, n$, we have: $\mathrm{H}\left(\Omega_{x}^{t}(A)[t]\right) \cong \mathrm{H}\left(\Omega_{x}^{t-1}(A)[t-1]\right) \cong \cdots \cong$ $\mathrm{H}\left(\Omega_{x}^{2}(A)[2]\right) \cong \mathrm{H}\left(\Omega_{x}^{1}(A)[1]\right)=0$. It follows that $\Omega_{x}^{t}(A) \in X_{t}^{\top}, 1 \leqslant t \leqslant n$, and $\Omega_{x}^{t}(A) \in X_{1}^{\top}, \forall t \geqslant 1$.
(ii), (iii) Since $\forall A \in \mathcal{T}$ we have a triangle, where Cell $_{t-1}(A) \in X \star X[1] \star \cdots \star \mathcal{X}[t-1]$ and $\Omega_{x}^{t}(A)[t] \in X_{t}^{\top}[t]$,

$$
\mathrm{Cell}_{t-1}(A) \xrightarrow{\gamma_{A}^{t-1}} A \xrightarrow{\omega_{A}^{t-1}} \Omega_{x}^{t}(A)[t] \xrightarrow{\beta_{A}^{t-1}[1]} \mathrm{Cell}_{t-1}(A)[1]
$$

it suffices to show that $\mathcal{T}(A, B)=0$, for any object A in $X \star X[1] \star \cdots \star \mathcal{X}[t-1]$ and any object $B \in X_{t}^{\top}[t]$. We have $B=C[t]$, where $C \in X_{t}^{\top}$, i.e. $\mathcal{T}(X, C[1])=\cdots=\mathcal{T}(X, C[t])=0$. On the other hand, since $A \in X \star X[1] \star \cdots \star X[t-1]$, there are triangles $X_{i}[i] \longrightarrow A_{i} \xrightarrow{\alpha_{i+1}} A_{i+1} \longrightarrow X_{i}[i+1]$, for $i=0,1, \cdots, t-2$, where $A_{0}=A$ and $X_{i} \in \mathcal{X}, A_{t-1} \in \mathcal{X}$. Let $f: A \longrightarrow C[t]$ be a map. Then the composition $X_{0} \longrightarrow A \longrightarrow C[t]$ is zero and therefore f factors through $\alpha_{1}: A \longrightarrow A_{1}$, say via a map $f_{1}: A_{1} \longrightarrow C[t]: f=\alpha_{1} \circ f_{1}$. Similarly the composition $X_{1}[1] \longrightarrow A_{1} \longrightarrow C[t]$ is zero, hance f_{1} factors through $\alpha_{2}: A_{1} \longrightarrow A_{2}$, say via a map $f_{2}: A_{2} \longrightarrow C[t]: f_{1}=\alpha_{2} \circ f_{2}$. Continuing in this way we deduce after $t-2$ steps that the map $f_{t-3}: A_{t-2} \longrightarrow C[t]$ admits a factorization $f_{t-3}=\alpha_{t-2} \circ f_{t-2}$. Since the composition $X_{t-2}[t-2] \longrightarrow A_{t-2} \longrightarrow$ $C[t]$ is zero, the map f_{t-2} factorizes through $\alpha_{t-1}: A_{t-2} \longrightarrow A_{t-1}$, say via a map $f_{t-1}: A_{t-1} \longrightarrow C[t]$: $f_{t-2}=\alpha_{t-1} \circ f_{t-1}$. Since $A_{t-1} \in \mathcal{X}[t-1]$, so $A_{t-1}=X^{*}[t-1]$, with $X^{*} \in X$, the map f_{t-1} is zero since it lies in $\mathcal{T}\left(A_{t-1}, C[t]\right) \cong \mathcal{T}\left(X^{*}, C[1]\right)=0$. Then $f=\alpha_{1} \circ f_{1}=\cdots=\alpha_{1} \circ \alpha_{2} \circ \cdots \circ \alpha_{t-1} \circ f_{t-1}=0$. Hence (*) is a torsion pair in \mathcal{T}, and it remains to show that $\mathrm{H}\left(\gamma_{A}^{t}\right)$ is invertible, $1 \leqslant t \leqslant n-1$. This follows directly from (i) and the construction of the cellular tower $\left(C_{\dot{A}}^{\bullet}\right)$ of A.
(iv) It follows from the triangle (\dagger) that $\Omega_{X}^{t}(A) \in \mathcal{X}$ implies that $A \in X \star X[1] \star \cdots \star \mathcal{X}[t]$. Conversely assume that $A \in X_{\star} X[1] \star \cdots \star \mathcal{X}[t]$. Then the right $(X \star X[1] \star \cdots \star \mathcal{X}[t])$-approximation $\gamma_{A}^{t}:$ Cell $_{t}(A) \longrightarrow A$ splits and therefore $\omega_{A}^{t}=\omega_{A}^{t-1} \circ h_{A}^{t}[t]=0$. Hence the map $h_{A}^{t}[t]$ factorizes through the cone Cell ${ }_{A}^{t-1}[1]$ of ω_{A}^{t-1}, say via a map $f:$ Cell $_{t-1}(A)[1] \longrightarrow \Omega_{x}^{t+1}(A)[t+1]$. We show that $f=0$ or equivalently $f[-1]=0$. Indeed there are triangles $X_{i}[i] \longrightarrow M_{i} \longrightarrow M_{i+1} \longrightarrow X_{i}[1+1]$, where the X_{i} lie in $X, M_{0}=\operatorname{Cell}_{t-1}(A), M_{i} \in X[i] \star \cdots X[t-1]$, and $M_{t-1}=X_{t-1}[t-1] \in X$. Now $\Omega_{X}^{t+1}(A) \in X_{t}^{\top}$. Indeed this follows form (i) if $t \leqslant n-1$ and by applying H to the triangle $\Omega_{x}^{n+1}(A) \longrightarrow X_{A}^{n} \longrightarrow \Omega_{x}^{n}(A) \longrightarrow \Omega_{x}^{n+1}(A)[1]$ and using that $\Omega_{x}^{n}(A) \in X_{n}^{\top}$, if $t=n$. It follows that the composition $X_{0} \longrightarrow M_{0} \longrightarrow \Omega_{x}^{t+1}(A)[t]$ is zero, hence $f[-1]: M_{0} \longrightarrow \Omega_{x}^{t+1}(A)[t]$ factorizes through $M_{0} \longrightarrow M_{1}$. Similarly since the composition $X_{1}[1] \longrightarrow M_{1} \longrightarrow \Omega_{x}^{t+1}(A)[t]$ is zero, the map $M_{1} \longrightarrow$ $\Omega_{x}^{t+1}(A)[t]$ factorizes through $M_{1} \longrightarrow M_{2}$, hence $f[-1]$ factorizes through $M_{0} \longrightarrow M_{2}$. Continuing in this way we find that $M_{t-3} \longrightarrow \Omega_{x}^{t+1}(A)[t]$ factorizes through M_{t-2}. Finally since the map $X_{t-2}[t-2] \longrightarrow \Omega_{x}^{t+1}(A)[t]$ is zero, the map $M_{t-2}[t-2] \longrightarrow \Omega_{x}^{t+1}(A)[t]$ factorizes through $M_{t-1}=X_{t-1}[t-1] \longrightarrow \Omega_{x}^{t+1}(A)[t]$. This last map being zero, it follows that so is the map $f[-1]: M_{0} \longrightarrow \Omega_{x}^{t+1}(A)[t]$. Hence $f=0$ and therefore $h_{A}^{t}[t]=0$. Then from the triangles, $X_{A}^{t}[t] \longrightarrow \Omega_{X}^{t}(A)[t] \xrightarrow{h_{A}^{t}[t]} \Omega_{X}^{t+1}(A)[t+1] \longrightarrow X_{A}^{t}[t+1]$, cf. Remark 2.2, we deduce that $\Omega_{X}^{t}(A)[t]$ lies in $X[t]$ as a direct summand of $X_{A}^{t}[t]$. It follows that $\Omega_{X}^{t}(A) \in X$.

As a direct consequence of the Ghost Lemma (Proposition 3.2) and Proposition 4.2 we have the following.
Corollary 4.3. Let X be n-rigid. Then for any object $A \in \mathcal{T}$ and $1 \leqslant t \leqslant n$, the following are equivalent:
(i) $\Omega_{X}^{t}(A) \in X$.
(ii) $A \in X \star X[1] \star \cdots \star X[t]$.
(iii) $\operatorname{Gh}_{X}^{[t+1]}(A,-)=0$.

Combining Proposition 4.2(ii) and Remark 2.2, we also have the following.
Corollary 4.4. Let \mathcal{X} be a contravariantly finite n-rigid subcategory of \mathcal{T} and $A \in \mathcal{T}$. Then the maps $\gamma_{A}^{t}: \operatorname{Cell}_{t}(A) \longrightarrow A$ and $\alpha_{A}^{t}: \operatorname{Cell}_{t-1}(A) \longrightarrow \operatorname{Cell}_{t}(A)$ of the cellular tower of A induce isomorphisms:

$$
\mathrm{H}(A) \xrightarrow{\cong} \mathrm{H}\left(\operatorname{Cell}_{1}(A)\right) \stackrel{\cong}{\Longrightarrow} \mathrm{H}\left(\operatorname{Cell}_{2}(A)\right) \xrightarrow{\cong} \cdots \xrightarrow{\cong} \mathrm{H}\left(\operatorname{Cell}_{n}(A)\right)
$$

and exact sequences:

$$
\begin{aligned}
\mathrm{H}\left(X_{A}^{1}\right) \longrightarrow \mathrm{H}\left(\mathrm{Cell}_{0}(A)\right) \longrightarrow \mathrm{H}\left(\mathrm{Cell}_{1}(A)\right) \longrightarrow 0 \\
0 \longrightarrow \mathrm{H}\left(\operatorname{Celll}_{n}(A)\right) \longrightarrow \mathrm{H}\left(\operatorname{Cell}_{n+1}(A)\right) \longrightarrow \mathrm{H}\left(X_{A}^{n+1}[n+1]\right)
\end{aligned}
$$

The following gives a condition ensuring that the filtrations (3.2), (4.1) and (4.2) stabilize:

Theorem 4.5. Let \mathcal{X} be a contravariantly finite n-rigid subcategory of \mathcal{T}. Then the following are equivalent:
(i) $X_{n}^{\top}=X$.
(ii) $\Omega_{X}^{n}(A) \in X, \forall A \in \mathcal{T}$.
(iii) $\operatorname{Gh}_{x}^{[n+1]}(\mathcal{T})=0$.
(iv) $\mathcal{T}=X \star X[1] \star \cdots \star X[n]$.

If one of the above equivalent conditions holds, then $X_{n+k}^{\top}=0, \forall k \geqslant 1$.

Proof. Since by Proposition $4.2, \Omega_{X}^{n}(A)[n]$ lies in $X_{n}^{\top}[n]$, condition (i) implies that $\Omega_{x}^{n}(A) \in X, \forall A \in \mathcal{T}$. Hence (i) \Rightarrow (ii), and by Corollary 4.3 we have (ii) \Leftrightarrow (iii) \Leftrightarrow (iv). We show that (iv) \Rightarrow (i). By Proposition 4.2 we know that, for any object $A \in \mathcal{T}$, the map $\omega_{A}^{n-1}: A \longrightarrow \Omega_{x}^{n}(A)[n]$ is a left X_{n}^{\top}-approximation of A and $\Omega_{x}^{n}(A)[n]$ lies in $X[n]$ since $\Omega_{x}^{n}(A) \in X$ by Corollary 4.3. Hence if $A \in X_{n}^{\top}[n]$, the map ω_{A}^{n-1} is split monic and therefore A lies in $X[n]$ as a direct summand of $\Omega_{X}^{n}(A)[n]$. We infer that $X_{n}^{\top}[n] \subseteq \mathcal{X}[n]$, or equivalently $X_{n}^{\top} \subseteq X$. Since X is n-rigid, we have $X \subseteq X_{n}^{\top}$, hence $X_{n}^{\top}=X$, i.e. (iv) \Rightarrow (i).

If one of the first four equivalent conditions holds, then let $A \in X_{n+1}^{\top}$ and $B=A[1]$. Then $\mathcal{T}(X, B)=0$ and clearly $B \in X_{n}^{\top}$. Since $X_{n}^{\top}=X$, it follows that $\mathcal{T}(B, B)=0$, i.e. $B=A[1]=0$ and therefore $A=0$. Hence $X_{n+1}^{\top}=0$ and then trivially $X_{n+k}^{\top}=0, \forall k \geqslant 1$.

Under the equivalent conditions of Theorem 4.6, we now show that $\operatorname{Ker} \mathrm{H}=X^{\top}$ admits a nice description.
Corollary 4.6. Let X be a n-rigid subcategory of \mathcal{T}, where $n \geqslant 1$. If $\mathcal{T}=X \star X[1] \star \cdots \star \mathcal{X}[n]$, then the full subcategories X^{\top} and ${ }^{\top} X$ are functorially finite in \mathcal{T}. Moreover:

$$
X^{\top}=X[1] \star X[2] \star \cdots \star X[n] \quad \text { and } \quad{ }^{\top} X=X[-n] \star X[-n+1] \star \cdots \star X[-1]
$$

Proof. By Remark 2.2 we have $\Omega_{x}^{t}(A) \in X \star X[1] \star \cdots \star X[n-t], 0 \leqslant t \leqslant n$. Hence $\Omega_{x}^{1}(A)[1] \in(X \star X[1] \star$ $\cdots \star \mathcal{X}[n-1])[1]=X[1] \star \cdots \star X[n]$. By Proposition $4.2($ iii $)$ we have $X[1] \star \cdots \star X[n] \subseteq X^{\top}$. Consider the triangle $\Omega_{X}^{1}(A) \longrightarrow X_{A}^{0} \longrightarrow A \longrightarrow \Omega_{X}^{1}(A)[1]$. If $A \longrightarrow B$ is a map, where $B \in X[1] \star \cdots \star X[n]$, then the composition $X_{A}^{0} \longrightarrow A \longrightarrow B$ is zero and therefore $A \longrightarrow B$ factorizes through $h_{A}^{1}: A \longrightarrow \Omega_{x}^{1}(A)[1]$. Hence h_{A}^{1} is a left $(X[1] \star \cdots \star X[n])$-approximation of A. If $A \in X^{\top}$, then the map $X_{A}^{0} \longrightarrow A$ is zero and therefore A lies in $X[1] \star \cdots \star X[n]$ as a direct summand of $\Omega_{X}^{1}(A)[1]$, i.e. $X^{\top} \subseteq X[1] \star \cdots \star X[n]$. By Proposition 4.4, $X_{\star \cdots \star}[n-1]$ is contravariantly finite. This clearly implies that $\left(X_{\star} \cdots \star X[n-1]\right)[1]=X[1] \star \cdots \star X[n]=X^{\top}$ is also contravariantly finite. The proof for ${ }^{\top} \mathcal{X}$ is dual and is left to the reader.

We close this section with the following vanishing result, which, will be useful later and, gives conditions ensuring that the sequence of cones $\left\{\omega_{A}^{n}: A \longrightarrow \Omega_{X}^{n}(A)[n]\right\}_{n \geqslant 0}$ is eventually trivial.
Lemma 4.7. Let X be a contravariantly finite n-rigid subcategory of \mathcal{T}. Then $\forall A \in X \star X[1] \star \cdots \star \mathcal{X}[n]$:

$$
\begin{equation*}
\mathcal{T}\left(\Omega_{X}^{t}(A), X[n-t+1]\right)=0, \quad 1 \leqslant t \leqslant n \tag{4.3}
\end{equation*}
$$

Moreover $\omega_{A}^{t}=0, \forall t \geqslant n$, and there is a decomposition: Cell $_{t}(A) \cong A \oplus \Omega_{X}^{t+1}(A)[t], \forall t \geqslant n$.
Proof. Since $A \in X \star X[1] \star \cdots \star X[n]$, by Corollary 4.3 we have $\Omega_{X}^{n}(A)$ lies in X. Then the triangles

$$
\begin{equation*}
\Omega_{X}^{t}(A) \longrightarrow X_{A}^{t-1} \longrightarrow \Omega_{X}^{t-1}(A) \longrightarrow \Omega_{X}^{t}(A)[1], \quad 1 \leqslant t \leqslant n \tag{A}
\end{equation*}
$$

show that $\Omega_{X}^{t}(A)$ lies in $X \star X[1] \star \cdots \star X[n-t]$. Since by Proposition 4.2 we have a torsion pair $(X \star X[1] \star$ $\left.\cdots \star X[n-t], X_{n-t+1}^{\top}[n-t+1]\right)$ in \mathcal{T} and $X[n-t+1] \subseteq X_{n-t+1}^{\top}[n-t+1]$, because $X \subseteq X_{n-t+1}^{\top}$, we get directly (4.3). On the other hand the right $(X \star X[1] \star \cdots \star X[n])$-approximation γ_{A}^{n} of A splits and therefore $\omega_{A}^{n}=0$. Then from the tower of triangles $\left(C_{A}^{\bullet}\right)$, we have $\omega_{A}^{t}=0, \forall t \geqslant n$.

5. Homological Dimension

Let \mathcal{T} be a triangulated category with split idempotents and \mathcal{X} a contravariantly finite subcategory of \mathcal{T}.
5.1. The adjoint pair $\left(\Sigma_{x}, \Omega_{x}\right)$. Let A be in \mathcal{T} and consider triangles

$$
\Omega_{X}(A) \xrightarrow{g_{A}^{0}} X_{A}^{0} \xrightarrow{f_{A}^{0}} A \xrightarrow{h_{A}^{0}} \Omega_{X}(A)[1] \quad \text { and } \quad \tilde{\Omega}_{X}(A) \xrightarrow{\tilde{g}_{A}^{0}} \quad \tilde{X}_{A}^{0} \xrightarrow{\tilde{f}_{A}^{0}} A \xrightarrow{\tilde{h}_{A}^{0}} \tilde{\Omega}_{X}(A)[1]
$$

where the maps $X_{A}^{0} \longrightarrow A \longleftarrow \tilde{X}_{A}^{0}$ are right \mathcal{X}-approximations. Then there are maps $\beta: X_{A}^{0} \longrightarrow \tilde{X}_{A}^{0}$ and $\tilde{\beta}: \tilde{X}_{A}^{0} \longrightarrow X_{A}^{0}$ inducing morphisms of triangles:

Since $h_{A}^{0}[-1] \circ \gamma \circ \tilde{\gamma}=h_{A}^{0}[-1]$ and $\tilde{h}_{A}^{0} \circ \tilde{\gamma} \circ \gamma=\tilde{h}_{A}^{0}[-1]$, there are maps $\kappa: X_{A}^{0} \longrightarrow \Omega_{X}(A)$ and $\lambda: \tilde{X}_{\mathscr{A}}^{0} \longrightarrow$ $\tilde{\Omega}_{x}(A)$ such that: $1_{\Omega_{x}(A)}-\gamma \circ \tilde{\gamma}=g_{A}^{0} \circ \kappa$ and $1_{\tilde{\Omega}_{x(A)}}-\tilde{\gamma} \circ \gamma=\tilde{g}_{A}^{0} \circ \lambda$. This means that the map $\underline{\gamma}$ is invertible in \mathcal{T} / X and $\underline{\gamma}^{-1}=\tilde{\gamma}$. We infer that the object $\Omega_{X}(A)$ is uniquely determined by A up to an isomorphism in the stable category $\overline{\mathfrak{T}} / X$ and does not depends on the choice of the right \mathcal{X}-approximations. Now if $\alpha: A \longrightarrow B$ is a map in \mathcal{T}, then α induces a morphism of triangles indicated in the left of the following display

The maps β and γ are not uniquely determined, so if there are maps β^{\prime} and γ^{\prime} making the diagram on the right of the above display a morphism of triangles, then clearly $\gamma-\gamma^{\prime}=g_{A}^{0} \circ \rho$ for some map $\rho: X_{A}^{0} \longrightarrow \Omega_{x}(B)$. Then $\underline{\gamma}=\underline{\gamma}^{\prime}$ in the stable category \mathcal{T} / X and this unique map is denoted by $\Omega_{X}(\underline{\alpha})$. It is then easy to see that the assignments $A \longmapsto \Omega_{X}(A)$ and $\alpha \longmapsto \Omega_{X}(\underline{\alpha})$ define an additive functor $\Omega_{X}: \mathcal{T} / X \longrightarrow \mathcal{T} / X$. Dually if X is covariantly finite, then by performing the dual constructions we obtain an additive functor $\Sigma x: \mathcal{T} / \mathcal{X} \longrightarrow \mathcal{T} / X$.

Lemma 5.1. If \mathcal{X} is a functorially finite subcategory of \mathfrak{T}, then we have an adjoint pair

$$
\left(\Sigma_{X}, \Omega_{X}\right): \mathcal{T} / X \longrightarrow \mathcal{T} / X
$$

and the unit $\delta: \operatorname{Id}_{\mathcal{T} / X} \longrightarrow \Omega_{x} \Sigma_{X}$ and the counit $\varepsilon: \Sigma_{X} \Omega_{X} \longrightarrow \mathrm{Id}_{\mathcal{T} / X}$ induce isomorphisms:

$$
\Omega_{x}(\underline{\varepsilon}): \Omega_{x} \Sigma_{x} \Omega_{x} \stackrel{\cong}{\Longrightarrow} \Omega_{x} \text { and } \Sigma_{x}(\underline{\delta}): \Sigma_{x} \xrightarrow{\cong} \Sigma_{x} \Omega_{x} \Sigma_{x}
$$

Proof. Using functorial finiteness of X we may construct triangles

We leave to the reader to check that the induced maps $\underline{\varepsilon}_{A}: \Sigma_{X} \Omega_{X}(\underline{A}) \longrightarrow \underline{A}$ and $\underline{\delta}_{A}: \underline{A} \longrightarrow \Omega_{x} \Sigma_{X}(\underline{A})$ are natural and define the counit and the unit of an adjoint pair $\left(\Sigma_{X}, \Omega_{x}\right)$ in \mathcal{T} / X. Since by construction $\mathcal{T}\left(X, h_{\Omega_{x}(A)}^{0}\right)=\mathcal{T}\left(X, \varepsilon_{A}\right) \circ \mathcal{T}\left(X, h_{A}^{0}\right)=0$ and $\mathcal{T}\left(h_{\Sigma_{x}(A)}^{0}[-1], X\right)=\mathcal{T}\left(\delta_{A}, X\right) \circ \mathcal{T}\left(h_{0}^{A}[-1]\right)=0$, it follows that
 $\Omega_{x} \Sigma_{X}(A) \longrightarrow X_{\Sigma_{X}(A)}^{0}$ is a left X-approximation of $\Omega_{x} \Sigma_{x}(A)$. As a consequence by the above triangles we infer that the maps $\Omega_{x}\left(\underline{\varepsilon}_{A}\right): \Omega_{x} \Sigma_{x} \Omega_{x}(\underline{A}) \longrightarrow \Omega_{x}(\underline{A})$ and $\Sigma_{x}\left(\underline{\delta}_{A}\right): \Sigma_{x}(\underline{A}) \longrightarrow \Sigma_{x} \Omega_{x} \Omega_{x}(\underline{A})$ are invertible. Hence we have natural isomorphisms: $\Omega_{x}(\underline{\varepsilon}): \Omega_{x} \Sigma_{x} \Omega_{x} \xrightarrow{\cong} \Omega_{x}$ and $\Sigma_{x}(\underline{\delta}): \Sigma_{x} \xrightarrow{\cong} \Sigma_{x} \Omega_{x} \Sigma_{x}$.
5.2. Homological Dimension. If $A \in \mathcal{T}$, we define the X-projective dimension $\operatorname{pd}_{x} A$ of A to be the smallest $n \geqslant 0$ such that $\Omega_{X}^{n}(\underline{A})=0$ in \mathcal{T} / X or equivalently $\Omega_{X}^{n}(A) \in X$. If $\Omega_{X}^{n}(A) \notin X, \forall n \geqslant 0$, then we set $\operatorname{pd}_{x} A=\infty$. The \mathcal{X}-global dimension of \mathcal{T} is defined by $\operatorname{gl}^{\operatorname{dim}} \operatorname{dim}_{x} \mathcal{T}=\sup \left\{\operatorname{pd}_{x} A \mid A \in \mathcal{T}\right\}$. Note that the discussion in 5.1 shows that the invariants $\mathrm{pd}_{X} A$ and $\operatorname{gl} \operatorname{dim}_{x} \mathcal{T}$ are well-defined. Dually if \mathcal{X} is covariantly finite, the \mathcal{X}-injective dimension id $X A$ is defined, and in case \mathcal{X} is functorially finite in \mathcal{T}, then the existence of the adjoint pair $\left(\Sigma_{x}^{n}, \Omega_{x}^{n}\right)$ in $\mathcal{T} / X, \forall n \geqslant 0$, shows that $\operatorname{gl} . \operatorname{dim}_{x} \mathcal{T}=\sup \left\{\operatorname{pd}_{x} A \mid A \in \mathcal{T}\right\}=\sup \{\operatorname{id} x A \mid A \in \mathcal{T}\}$.

Lemma 5.2. Let A be in \mathfrak{T}. Then we have the following.
(i) If $\operatorname{pd}_{X} A=m<\infty$, then $A \in X \star X[1] \star \cdots X[m]$.
(ii) If \mathcal{X} is n-rigid, then for any $m \leqslant n$ we have: $\operatorname{pd}_{X} A \leqslant m$ if and only if $A \in \mathcal{X} \star \mathcal{X}[1] \star \cdots \mathcal{X}[m]$.
(iii) If X is n-rigid, and $\operatorname{pd}_{x} A=m<n$, then $A \in X_{n-m}^{\top}$, i.e. $\mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n-m$.

Proof. Part (i) follows from Proposition 3.2 and part (ii) follows from Proposition 4.2.
(iii) Since $\operatorname{pd}_{X} A=m$, it follows that $A \in \mathcal{X} \star \mathcal{X}[1] \star \cdots \star \mathcal{X}[m]$. Then there exists a triangle $X_{0} \longrightarrow A \longrightarrow$ $B \longrightarrow X_{0}[1]$, where $X_{0} \in X$ and $B \in X[1] \star X[2] \star \cdots \star X[m]$. It follows that $B[i] \in X[i+1] \star \cdots \star X[m+i]$ and this implies that for $1 \leqslant i \leqslant n-m$ we have $\mathcal{T}(\mathcal{X}, B[i])=0$ since \mathcal{X} is n-rigid and $m<n$. Then applying $\mathcal{T}(\mathcal{X},-)$ to the above triangle we see directly that $\mathcal{T}(\mathcal{X}, A[i])=0,1 \leqslant i \leqslant n-m$.

By Corollary 5.2 we have that if X is n-rigid, then $g l$. $\operatorname{dim}_{X} \mathcal{T} \leqslant m$ if and only if $\Omega_{X}^{m}(A) \in X, \forall A \in \mathcal{T}$ if and only if $\mathrm{Gh}_{X}^{[m+1]}(A,-)=0, \forall A \in \mathcal{T}$, if and only if $\mathcal{T}=X \star X[1] \star \cdots \star \mathcal{X}[m]$.
Corollary 5.3. Let \mathcal{T} be a non-trivial triangulated category and \mathcal{X} a contravariantly finite n-rigid subcategory of \mathcal{T}, where $n \geqslant 1$. Then $\operatorname{gl} . \operatorname{dim}_{X} \mathcal{T} \geqslant n$, and $\operatorname{gl} . \operatorname{dim}_{X} \mathcal{T}=n$ if and only if $\mathcal{T}=X \star X[1] \star \cdots \star \mathcal{X}[n]$.

Proof. We may assume that $\operatorname{gl} . \operatorname{dim}_{X} \mathcal{T}=m<\infty$, and let $m<n$. Then we have that $\Omega_{X}^{m}(A) \in X, \forall A \in \mathcal{T}$ and therefore $\mathcal{T}=X \star X[1] \star \cdots \star \mathcal{X}[m]$. Since $m<n, \mathcal{X}$ is m-rigid and then by Theorem 4.7 we have that $X_{m+1}^{\top}=0$. Since $\mathrm{pd}_{x} A[t] \leqslant m, \forall t \geqslant 0$, it follows by Lemma 5.2 that $A[t] \in X_{n-m}^{\top}$. This clearly implies that $A \in X_{m+1}^{\top}$ and therefore $A=0$. This contradiction shows that $\operatorname{gl} . \operatorname{dim}_{x} \mathcal{T} \geqslant n$. Moreover by Lemma 5.2 we have $\mathrm{gl} . \operatorname{dim}_{X} \mathcal{T}=n$ if and only if $\mathcal{T}=X \star X[1] \star \cdots \star X[n]$.

We use the above results to construct certain exact sequences in mod- \mathcal{X} which will be useful later on.
Theorem 5.4. Let $1 \leqslant t \leqslant n$ and \mathcal{X} be a contravariantly finite subcategory of \mathcal{T} such that

$$
\begin{equation*}
\mathcal{T}(X, X[i])=0, \quad \forall i \in[-t+1, t] \backslash\{0\} \tag{*}
\end{equation*}
$$

(i) For any $A \in X_{t-1}^{\top}[t] \cap X_{1}^{\top}$ there is a short exact sequence

$$
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(E_{0}\right) \longrightarrow \mathrm{H}\left(E_{1}\right) \longrightarrow 0
$$

where $E_{0}, E_{1} \in X_{t}^{\top}[t+1]$.
(ii) For any $A \in(X \star X[1] \star \cdots \star X[t]) \cap X_{t}^{\top}[t+1]$, there is an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(X^{t}\right) \longrightarrow \mathrm{H}\left(X^{n-1}\right) \longrightarrow \cdots \cdots \longrightarrow \mathrm{H}\left(X^{1}\right) \longrightarrow \mathrm{H}\left(X^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0
$$

where the X^{i}, X_{j} lie in X and $\mathrm{pd} \mathrm{H}(A) \leqslant t$.
The split the proof into two steps.
Proposition 5.5. Let $n \geqslant 1$ and X be a contravariantly finite n-rigid subcategory of \mathcal{T}. Then for any object $A \in X_{t-1}^{\top}[t], 1 \leqslant t \leqslant n$, there exists a triangle

$$
A \longrightarrow E_{0} \longrightarrow E_{1} \longrightarrow A[1]
$$

where $E_{0}, E_{1} \in X_{t}^{\top}[t+1]$ and the sequence $0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(E_{0}\right) \longrightarrow \mathrm{H}\left(E_{1}\right)$ is exact. In particular if, in addition, $A \in X_{1}^{\top}$, then there exists an exact sequence

$$
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(E_{0}\right) \longrightarrow \mathrm{H}\left(E_{1}\right) \longrightarrow 0
$$

Proof. Case $n=1$: Then condition (*) reduces to $\mathcal{T}(X, X[1])=0$, i.e. $X \subseteq X_{1}^{\top}$. Since, by Proposition 4.2, we have $\mathcal{T}\left(X, \Omega_{X}^{1}(A)[1]\right)=0$, it follows that $\Omega_{X}^{1}(A) \in X_{1}^{\top}, \forall A \in \mathcal{T}$. For any $X \in X$, consider the triangle

$$
\begin{equation*}
\Omega_{x}^{1}(X[-1])[1] \longrightarrow \operatorname{Cell}_{0}(X[-1])[1] \longrightarrow X \longrightarrow \Omega_{x}^{1}(X[-1])[2] \tag{5.1}
\end{equation*}
$$

where $\operatorname{Cell}_{0}(X[-1])=X_{X[-1]}^{0} \in X \subseteq X_{1}^{\top}$. Applying H and using that $X \subseteq X_{1}^{\top}$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(\Omega_{x}^{1}(X[-1])[2]\right) \longrightarrow \mathrm{H}\left(\text { Cell }_{0}(X[-1])[2]\right) \longrightarrow 0
$$

Then the assertion follows by setting $E_{0}=\Omega_{x}^{1}(X[-1])$ and $E_{1}=\operatorname{Cell}_{0}(X[-1])$.
Case $n \geqslant 2$: Let $A \in X_{t-1}^{\top}[t]$, i.e. $\mathcal{T}(X, A[-1])=\mathcal{T}(X, A[-2])=\cdots=\mathcal{T}(X, A[-t+1])=0$. Consider the triangle arising from the tower Cell ${ }_{A[-1]}$:

$$
\Omega_{x}^{t}(A[-1])[t-1] \longrightarrow \operatorname{Cell}_{t-1}(A[-1]) \longrightarrow A[-1] \longrightarrow \Omega_{x}^{t}(A[-1])[t]
$$

Setting $\Omega_{x}^{t}(A[-1]):=B$ and $\left.C=\operatorname{Cell}_{t-1}(A[-1])[1]\right)$, we have a triangle

$$
B[t] \longrightarrow C \longrightarrow A \longrightarrow B[t+1]
$$

and, by Proposition 4.2, we know that $B \in X_{t}^{\top}$ and $C \in X[1] \star X[1] \star \cdots \star \mathcal{X}[t]$. Applying H to this triangle and using that $\mathrm{H}(C)=0$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(B[t+1]) \longrightarrow \mathrm{H}(C[1])
$$

where by construction we have $B[t+1] \in X_{t}^{\top}[t+1]$. Now applying the functor H to the triangles

$$
\begin{aligned}
& B[1] C[-t+1] \longrightarrow A[-t+1] \longrightarrow B[2] \\
& B[2] \longrightarrow C[-t+2] \longrightarrow A[-t+2] \longrightarrow B[3] \\
& \ldots \ldots \ldots \ldots
\end{aligned}
$$

and using that $\mathcal{T}(X, A[-i])=0,1 \leqslant i \leqslant t-1$, and $\mathcal{T}(X, B[j])=0,1 \leqslant j \leqslant t$, we have:

$$
\mathcal{T}(X, C[-t+1])=\mathcal{T}(X, C[-t+2])=\mathcal{T}(X, C[-t+3])=\cdots=\mathcal{T}(X, t[-1])=\mathcal{T}(X, C)=0
$$

This means that $C[-t] \in X_{t}^{\top}$, and therefore $C[1] \in X_{t}^{\top}[t+1]$. Now the assertion follows by setting $E_{0}=$ $\Omega_{x}^{t}(A[-1])=B$ and $E_{1}=\operatorname{Cell}_{t-1}(A[-1])[2]=A[1]$.
Proposition 5.6. Let \mathcal{X} be a contravariantly finite n-rigid subcategory of \mathcal{T}, $n \geqslant 1$. Assume that $\mathcal{X} \subseteq \mathcal{X}_{t-1}^{\top}[t]$, if $2 \leqslant t \leqslant n$. If A lies in $(X \star X[1] \star \cdots \star X[t]) \cap X_{t}^{\top}[t+1]$, then $\Omega_{x}^{t}(A) \in X$ and $\operatorname{pd} \mathrm{H}(A) \leqslant t$.
Proof. If $t=1$, then since $A \in X \star X[1]$, there exists a triangle $X_{0} \longrightarrow A \longrightarrow X_{1}[1] \longrightarrow X_{0}[1]$, where the X_{i} lie in X. Applying H and using that $\mathcal{T}(X, A[-1])=0=\mathcal{T}(X, X[1])$, it follows that the sequence $0 \longrightarrow \mathrm{H}\left(X_{1}\right) \longrightarrow \mathrm{H}\left(X_{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$ is exact. This means that pd $\mathrm{H}(A) \leqslant 1$ and the map $X \longrightarrow A$ is a right \mathcal{X}-approximation of A, so its cocone $X_{1} \in \mathcal{X}$ can be chosen as $\Omega_{X}^{1}(A)$. If $2 \leqslant t \leqslant n$, then Corollary 3.12 shows that $\Omega_{x}^{t}(A) \in \mathcal{T}$ and $\mathrm{Ext}^{t+1}(\mathrm{H}(A), \mathrm{H}(B)=0, \forall B \in \mathcal{T}$. Hence $\mathrm{pd} \mathrm{H}(A) \leqslant t$.

6. Cluster-Tilting Subcategories

Let as before \mathcal{T} be a triangulated category and X a full subcategory of \mathcal{T} which is closed under direct summands and isomorphisms. The results of section 5 show that if \mathcal{X} is contravariantly finite and satisfies $X=$ X_{n}^{\top}, then X enjoys special properties. In this section we give several characterizations of such subcategories.

First we observe the following symmetry.
Proposition 6.1. Let \mathcal{X} be a full subcategory of \mathcal{T}, and $n \geqslant 1$. Then the following are equivalent:
(i) X is contravariantly finite and $X=X_{n}^{\top}$.
(ii) X is contravariantly finite and both X and X_{n}^{\top} are n-rigid.
(iii) X is covariantly finite and $X={ }_{n}^{\top} X$.
(iv) X is covariantly finite and both X and ${ }_{n}^{\top} X$ are n-rigid.

Proof. (i) \Rightarrow (ii) and (iii) \Rightarrow (iv) The proof trivial.
(ii) $\Rightarrow(\mathrm{i}) \Leftarrow$ (iv) Assume that (ii) holds. Since X is n-rigid, we have $X \subseteq X_{n}^{\top}$. Let A be an object of \mathcal{T} and consider the associated tower of triangles $\left(C_{A}^{\bullet}\right)$. By Proposition 4.2, the map $\omega_{A}^{n-1}: A \longrightarrow \Omega_{X}^{n}(A)[n]$ is a left $X_{n}^{\top}[n]$-approximation of A. If A lies in X_{n}^{\top}, then since the latter is n-rigid it follows that $\omega_{A}^{n-1}=0$ and therefore ω_{A}^{n-2} factorizes through the left cone $X_{A}^{n-1}[n-1]$ of $h_{A}^{n-1}[n-1]$. Since both A and X_{A}^{n-1} lie in X_{n}^{\top} and the latter is n-rigid, it follows that $\mathcal{T}\left(A, X_{A}^{n-1}[n-1]\right)=0$ and this implies that $\omega_{A}^{n-2}=0$. Continuing in this way after $n-1$ steps we deduce that $\omega_{A}^{1}=0$ and therefore the map ω_{A}^{0} factorizes through the left cone $X_{A}^{1}[1]$ of $h_{A}^{1}[1]$. Since both A and X_{A}^{1} lie in X_{n}^{\top} and the latter is n-rigid, we have $\mathcal{T}\left(A, X_{A}^{1}[1]\right)=0$ and this implies that $h_{A}^{0}=\omega_{A}^{0}=0$. Then A lies in X as a direct summand of X_{A}^{0}. Hence $X_{n}^{\top} \subseteq \mathcal{X}$ and therefore $X=X_{n}^{\top}$. The proof that (iv) \Rightarrow (i) is dual to the proof of the implication (ii) \Rightarrow (i) using cocellular towers, cf. 2.2, and is left to the reader.
(i) \Rightarrow (iii) Let $X=X_{n}^{\top}$. By Proposition 4.2 we know that $X_{n}^{\top}[n]$ is covariantly finite. Let A be in \mathcal{T} and let $\omega_{A[n]}^{n-1}: A[n] \longrightarrow \Omega_{X}^{n}(A[n])[n]$ be a left $X_{n}^{\top}[n]$-approximation of A. Then clearly the map $\omega_{A[n]}^{n-1}[-n]$: $A \longrightarrow \Omega_{X}^{n}(A[n])$ is a left X_{n}^{\top}-approximation of A, so X_{n}^{\top} is covariantly finite. Since $X_{n}^{\top}=X$, the last map is a left X-approximation of A and therefore X is covariantly finite in \mathcal{T}. Since X is n-rigid, we have $X \subseteq{ }_{n}^{\top} X$. Let A be in ${ }_{n}^{\top} X$. Consider the map $\omega_{A}^{n-1}: A \longrightarrow \Omega_{X}^{n}(A)[n]$. Then $\Omega_{X}^{n}(A)[n] \in X[n]$ and therefore $\omega_{A}^{n-1}=0$ since $A \in{ }_{n}^{\top} X$. Hence $\omega_{A}^{n-2} \circ h_{A}^{n-1}[n-1]=0$ and therefore ω_{A}^{n-1} factors through the left cone $X_{A}^{n-1}[n-1]$ of $h_{A}^{n-1}[n-1]$, say via a map $A \longrightarrow X_{A}^{n-1}[n-1]$. Since $A \in{ }_{n}^{\top} X$, the last map is zero and therefore $\omega_{A}^{n-2}=0$. Continuing in this we deduce after $n-1$ steps that $\omega_{A}^{1}=0$ and therefore $\omega_{A}^{0} \circ h_{A}^{1}[1]=0$. Then ω_{A}^{0} factorizes through the left cone $X_{A}^{1}[1]$ of $h_{A}^{1}[1]$. However $\mathcal{T}\left(A, X_{A}^{1}[1]\right)=0$, since $A \in{ }_{n}^{\top} X$. This implies that $h_{A}^{0}=\omega_{A}^{0}$ and therefore A lies in X as a direct summand X_{A}^{0}. Hence ${ }_{n}^{\top} X \subseteq X$ and therefore $X={ }_{n}^{\top} X$.

Definition 6.2. [21, 16] A full subcategory X of \mathcal{T} is called a $(n+1)$-cluster tilting, $n \geqslant 1$, if:
(i) X is functorially finite.
(ii) $X=\{A \in \mathcal{T} \mid \mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n\}$, i.e. $X=X_{n}^{\top}$.
(iii) $\mathcal{X}=\{A \in \mathcal{T} \mid \mathcal{T}(A, X[i])=0,1 \leqslant i \leqslant n\}$, i.e. $X={ }_{n}^{\top} X$.

Now we can prove the main result of this section which, among other things, gives several convenient characterizations of $(n+1)$-cluster subcategories.

Theorem 6.3. Let \mathcal{X} be a full subcategory of \mathcal{T}, and $n \geqslant 1$. Then the following are equivalent.
(i) X is a $(n+1)$-cluster tilting subcategory of \mathcal{T}.
(ii) X is contravariantly finite and $X=X_{n}^{\top}$.
(iii) X is covariantly finite and $X={ }_{n}^{\top} X$.
(iv) X is contravariantly finite and both X and X_{n}^{\top} are n-rigid.
(v) X covariantly finite and both X and ${ }_{n}^{\top} X$ are n-rigid.
(vi) X is contravariantly (or covariantly) finite n-rigid and: $\operatorname{gl} \operatorname{dim}_{x} \mathcal{T}=n$.
(vii) \mathcal{X} is contravariantly (or covariantly) finite n-rigid and: $\mathcal{T}=X \star X[1] \star \cdots \star \mathcal{X}[n]$.
(viii) X is contravariantly (or covariantly) finite n-rigid and: $\quad \mathrm{Gh}^{[n+1]}(\mathcal{T})=0$.
(ix) \mathcal{X} is contravariantly (or covariantly) finite n-rigid and, $\forall A \in \mathcal{T}: \Omega_{X}^{n}(A) \in X$.
(x) X is covariantly (or contravariantly) finite n-rigid and, $\forall A \in \mathcal{T}: \Sigma_{X}^{n}(A) \in X$.
(xi) X is contravariantly finite n-rigid, any object of $X_{n}^{\top}[n+1]$ is injective in mod- \mathcal{X} and the functor $\mathrm{H}: X_{n}^{\top}[n+1] \longrightarrow \bmod -\mathcal{X}$ is full and reflects isomorphisms.
If \mathcal{X} is a $(n+1)$-cluster subcategory of \mathcal{T}, then the abelian category mod- \mathcal{X} has enough projectives and enough injectives, the functors $X[n+1] \longrightarrow \bmod -\mathcal{X} \longleftarrow X$ are fully faithful and induce equivalences

$$
X[n+1] \xrightarrow{\approx} \operatorname{Inj} \bmod -x \quad \text { and } \quad x \xrightarrow{\approx} \text { Proj mod- } x
$$

By Proposition 6.1 and the results of sections 4 and 5 , the first ten conditions are equivalent. So to complete the proof, it remains to show that (xi) is equivalent to (i). This requires several steps.
Lemma 6.4. Let X be a contravariantly finite n-rigid subcategory of \mathcal{T}. If $A \in X \star X[1] \star \cdots \star X[k], 0 \leqslant k \leqslant n$, and $B \in \mathcal{T}$ is such that $\mathcal{T}(X, B[-i])=0,1 \leqslant i \leqslant k-1$, then :

$$
\operatorname{Gh}_{x}\left(\Omega_{x}^{1}(A), B\right)=0
$$

and the map $\mathrm{H}_{A, B}: \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(B)), f \longmapsto \mathrm{H}(f)$, is surjective.
Proof. Since $A \in X \star X[1] \star \cdots \star X[k], k \leqslant n$, it follows easily that $\Omega_{X}^{k}(A) \in X$ and then by induction we infer that $\Omega_{X}^{1}(A) \in X \star X[1] \star \cdots \star \mathcal{X}[k-1]$. Hence there is a triangle $X \longrightarrow \Omega_{X}^{1}(A) \longrightarrow C \longrightarrow X[1]$, where $X \in X$ and $C \in X[1] \star \cdots \star X[k-1]$. Let $\alpha: \Omega_{X}^{1}(A) \longrightarrow B$ be an X-ghost map. Then the composition $X \longrightarrow \Omega_{x}^{1}(A) \longrightarrow B$ is zero, hence $\Omega_{x}^{1}(A) \longrightarrow B$ factorizes through $\Omega_{x}^{1}(A) \longrightarrow C$. Since any map from an object from $\mathcal{X}[1] \star \cdots \star \mathcal{X}[k-1]$ to an object B satisfying $\mathcal{T}(X, B[-i])=0,1 \leqslant i \leqslant k-1$, is clearly zero, it follows that $\mathcal{T}(C, B)=0$. This implies that the map $\Omega_{X}^{1}(A) \longrightarrow B$ is zero and consequently $\operatorname{Gh}_{x}\left(\Omega_{X}^{1}(A), B\right)=0$.
Corollary 6.5. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T}. Let $B \in \mathcal{T}$ be such that $\mathcal{T}(\mathcal{X}, B[-i])=0$, $1 \leqslant i \leqslant n-1$. Then for any object $A \in \mathcal{T}$, there exists a short exact sequence

$$
0 \longrightarrow \mathrm{Gh}_{x}^{[n]}(A, B) \longrightarrow \mathcal{T}(A, B) \longrightarrow \operatorname{Hom}[\mathrm{H}(A), \mathrm{H}(B)] \longrightarrow 0
$$

If, in addition, $\mathcal{T}(X, B[-n])=0$, then the map $\mathrm{H}_{A, B}$ is invertible.
Proof. By Lemma 6.4, with $k=n$, we have $\operatorname{Gh}_{x}\left(\Omega_{X}^{1}(A), B\right)=0$, hence by Proposition 3.6 the map $\mathrm{H}_{A, B}$ is surjective. We show that $\mathrm{Gh}_{x}(A, B)=\operatorname{Ker}_{A, B}=\mathrm{Gh}_{x}^{[n]}(A, B)$. Let $\alpha: A \longrightarrow B$ be such that $\mathrm{H}(\alpha)=0$, i.e. α is X-ghost. Then α factorizes through $h_{A}^{1}: A \longrightarrow \Omega_{X}^{1}(A)[1]$, say via a map $\beta: \Omega_{X}^{1}(A)[1] \longrightarrow B$. Since $\Omega_{X}^{1}(A)[1] \in X[1] \star X[2] \star \cdots \star X[n]$, there are triangles $X_{i}[i] \xrightarrow{l_{i}} N_{i} \xrightarrow{\xi_{i}} N_{i+1} \longrightarrow X_{i}[i+1]$, for $1 \leqslant i \leqslant n-1$, where $N_{1}=\Omega_{X}^{1}(A)[1], X_{1} \in X$ and $M_{i+1} \in X[i+1] \star \cdots \star \mathcal{X}[n]$; in particular $M_{n}=X_{n}[n]$, where $X_{n} \in \mathcal{X}$. Since $\mathcal{T}(X, B[-1])=0$, we have $l_{1} \circ \beta=0$, and therefore $\beta=\xi_{1} \circ \beta_{2}$ for some map $\beta_{2}: N_{2} \longrightarrow B$. Using that $\mathcal{T}(X, B[-i])=0,1 \leqslant i \leqslant n-1$, by induction there exists a factorization $\beta=\xi_{1} \circ \xi_{2} \circ \cdots \xi_{n-1} \circ \beta_{n}$, where $\beta_{n}: X_{n}[n] \longrightarrow B$. Since $M_{i} \in X[i] \star \cdots X[n]$ and since clearly any map from an object of $X[i]$ to an object in $X[i+1] \star \cdots X[n]$ is zero, the map $\xi_{i}: M_{i} \longrightarrow M_{i+1}$ is $X[i]$-ghost. In particular the map $\xi_{n-1} \circ \beta_{n}: M_{n-1} \longrightarrow B$ is $X[n-1]$-ghost. Since $\alpha=h_{A}^{1} \circ \beta=h_{A}^{1} \circ \xi_{1} \circ \xi_{2} \circ \cdots \xi_{n-1} \circ \beta_{n}$, it follows that α lies in $\mathrm{Gh}_{X}^{[n]}(A, B)$, hence $\operatorname{KerH}_{A, B} \subseteq \mathrm{Gh}_{X}^{[n]}(A, B)$. Since clearly $\mathrm{Gh}_{X}^{[n]}(A, B) \subseteq \mathrm{Gh}_{X}(A, B)$, the assertion follows. If in addition $\mathcal{T}(X, B[-n])=0$, then the map β_{n} is zero. So $\alpha=0$ and then $\operatorname{Gh}_{x}^{[n]}(A, B)=0$.

Since any object $B \in X[n+1]$ satisfies the assumptions of the above Corollary we have the following.
Corollary 6.6. For any object $A \in \mathcal{T}$ and any object $X \in \mathcal{X}$, we have an isomorphism

$$
\mathrm{H}_{A, X[n+1]}: \mathcal{T}(A, X[n+1]) \xrightarrow{\cong} \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(X[n+1]))
$$

In particular the functor $\mathrm{H}: X[n+1] \longrightarrow \bmod -X$ is fully faithful.
The following result gives the implication (i) \Rightarrow (ix) in Theorem 6.3.
Proposition 6.7. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T}. Then mod- \mathcal{X} has enough injectives, and the functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$ induces an equivalence

$$
\mathrm{H}: X[n+1] \xrightarrow{\approx} \operatorname{Inj} \bmod -X
$$

Proof. Recall that by Lemma 2.4 the functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -X$ is almost full, i.e. setting $A^{*}=\operatorname{Cell}_{1}(A)$, for any object $A \in \mathcal{T}$, we have a canonical map $\gamma_{A}^{1}: A^{*} \longrightarrow A$ such that $\mathrm{H}\left(\gamma_{A}^{1}\right)$ is invertible and, for any map $\tilde{\mu}: \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$, there there exists a commutative diagram

$$
\begin{aligned}
& \mathrm{H}\left(A^{*}\right) \xrightarrow{\mathrm{H}(\mu)} \mathrm{H}\left(B^{*}\right) \\
& \mathrm{H}\left(\gamma_{A}^{1}\right) \downarrow \cong \\
& \mathrm{H}(A) \xrightarrow{\tilde{\mu}} \mathrm{H}\left(\gamma_{B}^{1}\right) \\
& \mathrm{H}(B)
\end{aligned}
$$

Let $\tilde{\mu}: \mathrm{H}(A) \longrightarrow \mathrm{H}(B)$ be a monomorphism in $\bmod -\mathcal{X}$ and let $\tilde{\alpha}: \mathrm{H}(A) \longrightarrow \mathrm{H}(X[n+1])$ be a map, where $X \in X$. Clearly the map $\mathrm{H}(\mu)$ is a monomorphism, so if $C \longrightarrow A^{*} \longrightarrow B^{*} \longrightarrow C[1]$ is a triangle in \mathcal{T}, then the map $C \longrightarrow A^{*}$ is X-ghost and therefore it factorizes through $X^{\top}=X[1] \star \cdots \star X[n]$. By Corollary 6.6, there is a map $\alpha: A \longrightarrow X[n+1]$ such that $\mathrm{H}(\alpha)=\tilde{\alpha}$. Since any map from an object of $X[1] \star \cdots \star X[n]$ to an object of $X[n+1]$ is clearly zero, it follows that the composition $C \longrightarrow A^{*} \longrightarrow A \longrightarrow X[n+1]$ is zero and therefore $\gamma_{A}^{1} \circ \alpha$ factorizes through μ, i.e. $\gamma_{A}^{1} \circ \alpha=\mu \circ \rho$ for some map $\rho: B^{*} \longrightarrow X[n+1]$. Then we have $\mathrm{H}\left(\gamma_{A}^{1}\right) \circ \mathrm{H}(\alpha)=\mathrm{H}(\mu) \circ \mathrm{H}(\rho)$ and therefore $\mathrm{H}\left(\gamma_{A}^{1}\right) \circ \mathrm{H}(\alpha)=\mathrm{H}\left(\gamma_{A}^{1}\right) \circ \tilde{\mu} \circ \mathrm{H}\left(\gamma_{B}^{1}\right)^{-1} \circ \mathrm{H}(\rho)$, hence $\mathrm{H}(\alpha)=\tilde{\mu} \circ \mathbf{H}\left(\gamma_{B}^{1}\right)^{-1} \circ \mathbf{H}(\rho)$. This shows that $\mathrm{H}(X[n+1])$ is injective, $\forall X \in X$.

We show that any object $\mathrm{H}(A)$ of mod- X is a subobject of an object from $\mathrm{H}(X[n+1])$. There is a map $\omega_{A[-1]}^{n-1}: A \longrightarrow \Omega_{X}^{n}(A[-1])[n+1]$ and a triangle

$$
\Omega_{x}^{n}(A[-1]) \longrightarrow \operatorname{Cell}_{n-1}(A[-1])[1] \longrightarrow A \longrightarrow \Omega_{x}^{n}(A[-1])[n+1]
$$

where by construction Cell $_{n-1}(A[-1])[1]$ lies in $X[1] \star \cdots \star X[n]$. Since $\Omega_{X}^{n}(A[-1]) \in X$, we have $\Omega_{X}^{n}(A[-1])[n+$ $1] \in X[n+1]$. Hence $\mathrm{H}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)$ is injective in mod-X, and the map $\mathrm{H}\left(\omega_{A[-1]}^{n-1}\right): \mathrm{H}(A) \longrightarrow$ $\mathrm{H}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)$ is a monomorphism, since $\mathrm{H}(X[1] \star \cdots \star X[n])=0$. hence mod- X has enough injectives.

Now let $\mathrm{H}(A)$ be an injective object of mod- X. By the above there exists a split monomorphism $\mathrm{H}(\mu)$: $\mathrm{H}(A) \longrightarrow \mathrm{H}(X[n+1])$, where $X \in X$. Hence there exists a map $\tilde{\alpha}: \mathrm{H}(X[n+1]) \longrightarrow \mathrm{H}(A)$ such that $\mathrm{H}(\mu) \circ \tilde{\alpha}=1_{\mathrm{H}(A)}$. Now the map $\tilde{\alpha} \circ \mathrm{H}(\mu)$ is an idempotent endomorphism of $\mathrm{H}(X[n+1])$ and therefore since the functor $\mathrm{H}: \mathcal{X}[n+1] \longrightarrow \bmod -\mathcal{X}$ is fully faithful, there exists an idempotent endomorphism $e: X[n+1] \longrightarrow$ $X[n+1]$ such that $\mathrm{H}(e)=\tilde{\alpha} \circ \mathbf{H}(\mu)$. Since idempotents split in \mathcal{T}, there exist maps $\kappa: X[n+1] \longrightarrow D$ and $\lambda: D \longrightarrow X[n+1]$ such that $e=\kappa \circ \lambda$ and $\lambda \circ \kappa=1_{X[n+1]}$. Clearly D is of the form $X^{\prime}[n+1]$, for some object $X^{\prime} \in X$, as a direct summand of $X[n+1]$. We claim that the map $\phi:=\mathrm{H}(\mu) \circ \mathrm{H}(\kappa): \mathrm{H}(A) \longrightarrow \mathrm{H}\left(X^{\prime}[n+1]\right)$ is an isomorphism with inverse the map $\psi:=\mathrm{H}(\lambda) \circ \tilde{\alpha}$. Indeed we have:

$$
\begin{gathered}
\phi \circ \psi=\mathrm{H}(\mu) \circ \mathrm{H}(\kappa) \circ \mathrm{H}(\lambda) \circ \tilde{\alpha}=\mathrm{H}(\mu) \circ \mathrm{H}(\kappa \circ \lambda) \circ \tilde{\alpha}=\mathrm{H}(\mu) \circ \mathrm{H}(e) \circ \tilde{\alpha}=\mathrm{H}(\mu) \circ \tilde{\alpha} \circ \mathrm{H}(\mu) \circ \tilde{\alpha}=1_{\mathrm{H}(A)} \\
\psi \circ \phi=\mathrm{H}(\lambda) \circ \tilde{\alpha} \circ \mathrm{H}(\mu) \circ \mathrm{H}(\kappa)=\mathrm{H}(\lambda) \circ \mathrm{H}(e) \circ \mathrm{H}(\kappa)=\mathrm{H}(\lambda) \circ \mathrm{H}(\kappa) \circ \mathrm{H}(\lambda) \circ \mathrm{H}(\kappa)=1_{\mathrm{H}\left(X^{\prime}[n+1]\right)}
\end{gathered}
$$

Hence the functor $\mathrm{H}: \mathcal{X}[n+1] \longrightarrow \operatorname{Inj} \bmod -\mathcal{X}$ is surjective on objects and therefore an equivalence.
Finally the next result shows the implication $(\mathrm{ix}) \Rightarrow(\mathrm{i})$ and completes the proof of Theorem 6.3.
Proposition 6.8. Let \mathcal{X} be a contravariantly finite n-rigid subcategory of \mathcal{T}. If the functor $\mathbf{H}: X_{n}^{\top}[n+1] \longrightarrow$ mod-X has image in $\operatorname{Inj} \bmod -\mathcal{X}$, is full and reflects isomorphisms, then \mathcal{X} is $(n+1)$-cluster tilting.
Proof. It suffices to show that $X_{n}^{\top} \subseteq X$. Let $A \in X_{n}^{\top}$ and consider the triangle $\Omega_{X}^{1}(A) \xrightarrow{g_{A}^{0}} X_{A}^{0} \longrightarrow$ $A \longrightarrow \Omega_{X}^{1}(A)[1]$. Applying H and using that X is n-rigid and $\mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n$, it follows that $\mathcal{T}\left(X, \Omega_{X}^{1}(A)[i]\right)=0,1 \leqslant i \leqslant n$, so $\Omega_{X}^{1}(A) \in X_{n}^{\top}$, and we have a monomorphism $\mathrm{H}\left(g_{A}^{0}[n+1]\right): \mathrm{H}\left(\Omega_{X}^{1}(A)[n+\right.$ 1]) $\longrightarrow \mathrm{H}\left(X_{A}^{0}[n+1]\right)$. On the other hand since $X \subseteq X_{n}^{\top}$ it follows that $X_{A}^{0}[n+1] \in X_{n}^{\top}[n+1]$. Since the objects
$\mathrm{H}\left(\Omega_{X}^{1}(A)[n+1]\right)$ and $\mathrm{H}\left(X_{A}^{0}[n+1]\right)$ are injective in mod- X, the above monomorphism splits. Since by hypothesis $\left.\mathrm{H}\right|_{X_{n}^{\top}[n+1]}$ is full and reflects isomorphisms, this implies that the map $g_{A}^{0}[n+1]: \Omega_{X}^{1}(A)[n+1] \longrightarrow X_{A}^{0}[n+1]$, or equivalently the map $\Omega_{X}^{1}(A)[1] \longrightarrow X_{A}^{0}[1]$, is split monic. Then the map $A \longrightarrow \Omega_{X}^{1}(A)[1]$ is zero and therefore A lies in \mathcal{X} as a direct summand of $X_{A}^{0} \in X$. Hence $X_{n}^{\top}=X$.

From now on let \mathcal{X} be a $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$.
Corollary 6.9. The abelian category mod- \mathcal{X} is Frobenius if and only if $\mathcal{X}=X[n+1]$.
Corollary 6.10. There exists a torsion triple:

$$
(X[k-n] \star \cdots \star X[k-2] \star X[k-1], X[k], X[k+1] \star X[k+2] \star \cdots \star X[k+n]), \quad \forall k \in \mathbb{Z}
$$

Proof. Since $X_{n}^{\top}=X$, by Proposition 4.2 there is a torsion pair $(X \star X[1] \star \cdots \star X[n-1], X[n])$ in \mathcal{T}. Clearly then $(X[k-n] \star \cdots \star X[k-2] \star X[k-1], X[k])$ is a torsion pair in $\mathcal{T}, \forall k \in \mathbb{Z}$. The proof that $(X[k], X[k+1] \star X[k+2] \star \cdots \star X[k+n])$ is a torsion pair in \mathcal{T} is dual, using cellular cotowers, see 2.2.

We denote by $\mathrm{K}_{0}(X, \oplus)$ the split Grothendieck group of the exact category X endowed with the split exact structure and by $\mathrm{K}_{0}(\mathcal{T})$ the Grothendieck group of \mathcal{T}. If $n=1$, so that X is a 2-cluster tilting subcategory, and if \mathcal{T} is algebraic, then Palu [25] proved that $\mathrm{K}_{0}(\mathcal{T})$ is a quotient of $\mathrm{K}_{0}(X, \oplus)$ by a certain subgroup. In our case we have the following for $n \geqslant 2$ and for arbitrary \mathcal{T}.

Corollary 6.11. The inclusion $\mathcal{X} \longrightarrow \mathcal{T}$ induces an epimorphism: $\mathrm{K}_{0}(\mathcal{X}, \oplus) \longrightarrow \mathrm{K}_{0}(\mathcal{T}) \longrightarrow 0$.
Proof. Clearly the inclusion $i: X \longrightarrow \mathcal{T}$ induces an homomorphism $\mathrm{K}_{0}(i): \mathrm{K}_{0}(X, \oplus) \longrightarrow \mathrm{K}_{0}(\mathcal{T})$, by $\mathrm{K}_{0}(i)[X]=$ [X]. Let A be in \mathcal{T} and consider the triangle $\Omega_{x}^{1}(A) \longrightarrow X_{A}^{0} \longrightarrow A \longrightarrow \Omega_{x}^{1}(A)[1]$. Then in $\mathrm{K}(\mathcal{T})$ we have a relation $[A]=\left[X_{A}^{0}\right]-\left[\Omega_{x}^{1}(A)\right]$. Similarly the triangle $\Omega_{x}^{2}(A) \longrightarrow X_{A}^{1} \longrightarrow \Omega_{x}^{1}(A) \longrightarrow \Omega_{x}^{2}(A)[1]$ gives the relation $\left[\Omega_{X}^{1}(A)\right]=\left[X_{A}^{1}\right]-\left[\Omega_{X}^{2}(A)\right]$ and therefore we have $[A]=\left[X_{A}^{0}\right]-\left[X_{A}^{1}\right]+\left[\Omega_{X}^{2}(A)\right]$. Continuing in this way we have a relation in $\mathrm{K}_{0}(\mathcal{T}):[A]=\sum_{i=0}^{n-1}(-1)^{i}\left[X_{A}^{i}\right]+(-1)^{n}\left[\Omega_{x}^{n}(A)\right]$. By Theorem 5.3 we have $\Omega_{x}^{n}(A):=$ $X_{A}^{n} \in \mathcal{X}$, hence $[A]=\sum_{i=0}^{n}(-1)^{i}\left[X_{A}^{i}\right]$. Hence $[A]=\sum_{i=0}^{n}(-1)^{i} \mathrm{~K}_{0}(i)\left(\left[X_{A}^{i}\right]\right)=\mathrm{K}_{0}(i)\left(\sum_{i=0}^{n}(-1)^{i}\left[X_{A}^{i}\right]\right)$, i.e. for any object A in \mathcal{T}, the generator $[A]$ lies in the image of $\mathrm{K}_{0}(i)$, This clearly implies that $\mathrm{K}_{0}(i)$ is surjective.

7. Certain Cluster Tilting Subcategories are Gorenstein

Our aim in this section is to show that a special class of $(n+1)$-cluster tilting subcategories, called $(n-k)$ strong $(n+1)$-cluster tilting subcategories, of an arbitrary triangulated category, where $n \geqslant 2 k-1$, enjoys the property that the associated cluster tilted category mod- \mathcal{X} is k-Gorenstein.

Main examples include all 2-cluster tilting subcategories and all $(n+1)$-cluster categories of associated to a finite-dimensional hereditary algebra over a field.
7.1. Gorenstein Categories. Let \mathscr{A} be an abelian category with enough projectives and enough injectives. We recall from [12] the following invariants attached to \mathscr{A} :

$$
\begin{gathered}
\operatorname{silp} \mathscr{A}=\sup \{\operatorname{id} P \mid P \in \operatorname{Proj} \mathscr{A}\}, \quad \operatorname{spli} \mathscr{A}=\sup \{\operatorname{pd} I \mid I \in \operatorname{Inj} \mathscr{A}\} \\
\text { G-dim } \mathscr{A}:=\max \{\operatorname{silp} \mathscr{A}, \operatorname{spli} \mathscr{A}\}
\end{gathered}
$$

We call G-dim \mathscr{A} the Gorenstein dimension of \mathscr{A} and then \mathscr{A} is called Gorenstein if G-dim $\mathscr{A}<\infty$. If G- $\operatorname{dim} \mathscr{A} \leqslant n<\infty$, then we say that \mathscr{A} is n-Gorenstein.
Lemma 7.1. Let \mathscr{A} be an abelian category with enough projectives and enough injectives. Assume that spli $\mathscr{A}<\infty$ and silp $\mathscr{A}<\infty$. Then \mathscr{A} is Gorenstein of dimension G- $\operatorname{dim} \mathscr{A}=\operatorname{spli} \mathscr{A}=\operatorname{silp} \mathscr{A}$.

Proof. Let spli $\mathscr{A}=n<\infty$ and silp $\mathscr{A}=m<\infty$. If $m=0$, then any projective object of \mathscr{A} is injective, and since any injective has finite projective dimension, bounded by n, it follows that any injective object is projective, i.e. $n=0$. Dually if $n=0$ we have $m=0$. In both cases \mathscr{A} is Frobenius, i.e. \mathscr{A} is Gorenstein of dimension $G-\operatorname{dim} \mathscr{A}=0$. Now let $n>m>0$, so $n \geqslant 2$. Since spli $\mathscr{A}=n$ there exists an injective object I such that $\Omega^{n-1} I$ is not projective, so $\operatorname{Ext}_{\mathscr{A}}^{1}\left(\Omega^{n-1} I,-\right) \neq 0$. Hence there exists an object $A \in \mathscr{A}$ such that $\operatorname{Ext}_{\mathscr{A}}^{n}(I, A)=\operatorname{Ext}_{\mathscr{A}}^{1}\left(\Omega^{n-1} I, A\right) \neq 0$. Let $0 \longrightarrow \Omega(A) \longrightarrow P \longrightarrow A \longrightarrow 0$ be exact where P is projective. Evaluating the exact sequence of functors $\cdots \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{1}(-, P) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{1}(-, A) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{2}(-, \Omega A) \longrightarrow \cdots$ at $\Omega^{n-1} I$ and using that $\operatorname{Ext}_{\mathscr{A}}^{2}\left(\Omega^{n-1} I, \Omega A\right) \cong \operatorname{Ext}_{\mathscr{A}}^{n+1}(I, \Omega A)=0$ since $\mathrm{pd} I \leqslant n$, we get an epimorphism $\operatorname{Ext}_{\mathscr{A}}^{1}\left(\Omega^{n-1} I, P\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{1}\left(\Omega^{n-1} I, A\right) \longrightarrow 0$. Hence $\operatorname{Ext}_{\mathscr{A}}^{n}(I, P)=\operatorname{Ext}_{\mathscr{A}}^{1}\left(\Omega^{n-1} I, P\right) \neq 0$. This shows that $m \geqslant$ id $P>n$ and this is not the case. Dually if $m>n$, then we arrive at a contradiction. This shows that $n=m$ and therefore \mathscr{A} is Gorenstein of Gorenstein dimension $\mathrm{G}-\operatorname{dim} \mathscr{A}=\operatorname{spli} \mathscr{A}=\operatorname{silp} \mathscr{A}$.
7.2. Strong Cluster Tilting Subcategories. Let as before \mathcal{T} be a triangulated category with split idempotents and \mathcal{X} a full subcategory of \mathcal{T} closed under direct summands and isomorphisms.

Then we have a chain of extension closed full subcategories of \mathcal{T} :

$$
\begin{equation*}
\cdots \subseteq X_{n-1}^{\top}[n] \subseteq X_{n-2}^{\top}[n-1] \subseteq X_{2}^{\top}[3] \subseteq X_{1}^{\top}[2] \subseteq X_{0}^{\top}[1]=X[2] \star X[3] \star \cdots \star X[n+1] \tag{*}
\end{equation*}
$$

where, as easily seen: $X_{t}^{\top}[t+1]=\{A \in \mathcal{T} \mid \mathcal{T}(X, A[-k])=0,1 \leqslant k \leqslant t\}$.
Clearly if X is $(n+1)$-cluster tilting, then: $X_{n+1}^{\top}[n+2]=0 \quad$ and $X[n+1]=X_{n}^{\top}[n+1]$.
Definition 7.2. A full subcategory X of \mathcal{T} is called t-strong, where $t \geqslant 1$, if:

$$
X \subseteq X_{t}^{\top}[t+1], \quad \text { i.e. } \quad \mathcal{T}(X, X[-1])=\cdots=\mathcal{T}(X, X[-t])=0
$$

The following gives a convenient characterization of when a cluster tilting subcategory is t-strong.
Proposition 7.3. If \mathcal{X} is $(n+1)$-cluster tilting, then for $1 \leqslant t \leqslant n$, the following are equivalent:
(i) X is t-strong.
(ii) $X[n+1] \subseteq X \star X[1] \star \cdots X[n-t]$.

Proof. (i) \Rightarrow (ii) We know that $\mathcal{T}=X \star X[1] \star \cdots \star \mathcal{X}[n]$ and therefore $X[n+1] \subseteq X \star X[1] \star \cdots \star \mathcal{X}[n]$. Hence for any object $X \in X$, there exists a triangle $A \longrightarrow X[n+1] \longrightarrow B \longrightarrow A[1]$, where $A \in \mathcal{X} \star \mathcal{X}[1] \star \cdots \star X[n-t]$ and $B \in \mathcal{X}[n-t+1] \star \cdots \star \mathcal{X}[n]$. Now the hypothesis (ii) implies that any map from an object from X to an object from $X[-t] \star \cdots \star \mathcal{X}[-1]$ is zero and this trivially implies that any map from an object from $X[n+1]$ to an object from $\mathcal{X}[n-t+1] \star \cdots \star \mathcal{X}[n]$ is zero. It follows that the map $X[n+1] \longrightarrow B$ is zero, hence $X[n+1]$ lies in $X \star X[1] \star \cdots \star X[n-t]$ as a direct summand of A.
(ii) \Rightarrow (i) The hypothesis implies that $X \subseteq X[-n-1] \star X[-n] \star \cdots \star X[-t-1]$. Hence for any object $X \in X$, there exists a triangle $A \longrightarrow X \longrightarrow B \longrightarrow A[1]$, where $A \in X[-n-1] \star \cdots \star X[-t-1]$. Let $1 \leqslant k \leqslant t$ and consider any map $X \longrightarrow X^{\prime}[-k]$, where $X^{\prime} \in X$. The composition $A \longrightarrow X \longrightarrow X^{\prime}[-k]$ is zero since it lies in $\mathcal{T}\left(X, X[n+1-k]\right.$. Hence the map $X \longrightarrow X^{\prime}[-k]$ factorizes through the map $X \longrightarrow B$. However using that $1 \leqslant k \leqslant t$, it follows easily that any map from an object from $X[-n] \star \cdots \star \mathcal{X}[-t-1]$ to an object from $X[-k]$ is zero. Hence the map $\left.X \longrightarrow X^{\prime}[-k]\right)$ is zero, i.e. $\mathcal{T}(X, X[-k])=0, \quad 1 \leqslant k \leqslant t$.

Corollary 7.4. Let X be an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $0 \leqslant k \leqslant n-1$.
(i) $X[n+t+1] \subseteq X[t] \star X[t+1] \star \cdots \star X[t+k], \quad \forall t \in \mathbb{Z}$
(ii) $\mathcal{T}(X, X[n+t+1])=0$, for $1 \leqslant t \leqslant n-k$.

Proof. By Proposition 7.3 we have $\mathcal{X}[n+1] \subseteq \mathcal{X} \star \mathcal{X}[1] \star \cdots \star \mathcal{X}[k]$ and (i) follows. Now $\mathcal{T}(X, X[n+t+1])$ is contained in $X[t] \star \cdots \star \mathcal{X}[n+k]$ and clearly $X[t] \star \cdots \star \mathcal{X}[n+k] \subseteq X[1] \star \cdots \star \mathcal{X}[n]=X^{\top}$ for $1 \leqslant t \leqslant n-k$.
7.3. Gorensteinness of Strong Cluster Tilting Subcategories. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$. Let $0 \leqslant k \leqslant n-1$ we say that \mathcal{X} is strictly $(n-k)$-strong if \mathcal{X} is $(n-k)$-strong but X is not $(n-k+1)$-strong. Our main aim in this section is to prove the following result. Note that (i) is due to Keller-Reiten [21] and the case $k=1$ in (iii) was observed independently by Iyama-Oppermann [17].

Theorem 7.5. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$.
(i) If $n=1$, then $G-\operatorname{dim} \bmod -\mathcal{X} \leqslant 1$.
(ii) G-dim mod- $X=0$ if and only if X is n-strong.
(iii) Assume that $n \geqslant 2$ and \mathcal{X} is $(n-k)$-strong, where $0 \leqslant k \leqslant n-1$. Then:

$$
0 \leqslant k \leqslant \frac{n+1}{2} \quad \Longrightarrow \quad \text { G-dim } \bmod -x \leqslant k
$$

In particular:
(a) If n is odd and X is $\left(\frac{n-1}{2}\right)$-strong, then: G-dim $\bmod -X \leqslant \frac{n+1}{2}$.
(b) If n is even and X is $\left(\frac{n+1}{2}\right)$-strong, then: G-dim mod- $\mathcal{X} \leqslant \frac{n-1}{2}$.

Moreover if X is strictly $(n-k)$-strong, then: \quad G-dimmod- $\mathcal{X}=k$.
We split the proof of Theorem 7.5 into three steps as Propositions 7.7, 7.8 and 7.9.
7.3.1. Finiteness of splimod- \mathcal{X}. We first investigate when $\operatorname{spl} \bmod -\mathcal{X}<\infty$. We begin with the reformulation of Theorem 5.4.

Proposition 7.6. Let \mathcal{X} be a contravariantly finite subcategory of \mathcal{T} and $A \in \mathcal{T}$.
(i) If X is 1 -rigid and $A \in(X \star X[1]) \cap X_{1}^{\top}[2]$, then: $\operatorname{pd~} \mathrm{H}(A) \leqslant 1$.
(ii) Let $t \geqslant 2$ and assume that \mathcal{X} is $(t-1)$-strong and t-rigid. Then:

$$
A \in\left(X \star X[1] \star \cdots \star X_{[t]}\right) \cap X_{t}^{\top}[t+1] \quad \Longrightarrow \quad \operatorname{pdH}(A) \leqslant t .
$$

The next result proves half of Theorem 7.5.
Proposition 7.7. Let X be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$. Let $0 \leqslant k \leqslant n-1$ and assume that X is $(n-k)$-strong. Then splimod- $\mathcal{X} \leqslant k$ provided that $n \geqslant 2 k-1$.

Proof. If X is n-strong, then clearly $X[n+1]=X_{n}^{\top}=X$ and therefore any injective object of mod- X is projective. Hence splimod- $\mathcal{X}=0$. Assume that X is $(n-1)$-strong. If $n=1$, then the condition 0 strong is vacuous, but $X[n+1] \subseteq X \star X[1]$, since $\mathcal{T}=X \star X[1]$. Hence for any $X \in X$, there exists a triangle $X^{1} \longrightarrow X^{0} \longrightarrow X[2] \longrightarrow X^{1}[1]$, where $X^{1}, X^{1} \in X$, This clearly implies that $\operatorname{pd} \mathrm{H}(X[2]) \leqslant 1$, i.e. spli mod- $X \leqslant 1$. If $n \geqslant 2$, then by Proposition 1.3 we have $X[n+1] \subseteq X \star X[1]$ and clearly $X[n+1] \subseteq X_{1}^{\top}[2]$. Then by Proposition 1.2 we have $\mathrm{pd} \mathrm{H}(X[n+1]) \leqslant 1, \forall X \in X$. Hence splimod- $X \leqslant 1$. If X is $(n-2)$-strong and $n \geqslant 3$, then by Proposition 1.3 we have $\mathcal{X}[n+1] \subseteq \mathcal{X} \star \mathcal{X}[1] \star X[2]$, and clearly $X \subseteq X_{2}^{\top}$ [3], since $n \geqslant 3$. Then by Proposition 7.6 we have $\mathrm{pd} \mathrm{H}(X[n+1]) \leqslant 2, \forall X \in \mathcal{X}$. Hence spli mod- $\mathcal{X} \leqslant 2$.

Continuing in this way assume that X is $(n-k)$-strong, where $2 \leqslant k \leqslant n-1$. By Proposition 7.3 then we have $X[n+1] \subseteq X \star X[1] \star \cdots \star X[k]$. Since clearly $X[n+1] \subseteq X_{k}^{\top}[k+1]$, we have $X[n+1] \subseteq$ $(X \star X[1] \star \cdots \star X[k]) \cap X_{k}^{\top}[k+1]$. Our assumption $n \geqslant 2 k-1$ gives $n-k \geqslant k-1$, so the chain of subcategories (*) shows that $X_{n-k}^{\top}[n-k+1] \subseteq X_{k-1}^{\top}[k]$. Since X is $(n-k)$-strong, it follows that $X \subseteq X_{n-k}^{\top}[n-k+1]$ and therefore $\mathcal{X} \subseteq X_{k-1}^{\top}[k]$, i.e. X is $(k-1)$-strong. Then Proposition 7.6 gives us that $\operatorname{pd} \mathrm{H}(X[n+1]) \leqslant k$, $\forall X \in \mathcal{X}$. We infer that spli mod- $\mathcal{X} \leqslant k$.
7.3.2. Finiteness of silp mod- \mathcal{X}. Now we turn our attention to the investigation of when silp mod- \mathcal{X} is finite. The following result combined with Proposition 7.7 proves the other half of Theorem 7.5.

Proposition 7.8. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$. Let $0 \leqslant k \leqslant n-1$ and assume that X is $(n-k)$-strong. Then silp $\bmod -\mathcal{X} \leqslant k$ provided that $n \geqslant 2 k-1$.

Proof. Let $X \in X$ be an arbitrary object. We shall show that id $\mathrm{H}(X) \leqslant k$. For the convenience of the reader and to make the proof more transparent, we first treat the cases $0 \leqslant k \leqslant 2$.

Case $k=0$. Let first $k=0$, i.e. X is n-strong. Then clearly we have $X[n+1]=X_{n}^{\top}=X$, so by Corollary 6.9 , mod- \mathcal{X} is Frobenius and then $G-\operatorname{dim} \bmod -\mathcal{X}=0$.

Case $k=1$. Now assume that $n \geqslant 1$ and $k=1$, so X is $(n-1)$-strong. First we treat the case $n=1$. Then the condition 0 -strong is vacuous. For any $X \in X$ we have a triangle

$$
\Omega_{x}^{1}(X[-1]) \longrightarrow \operatorname{Cell}_{0}(X[-1]) \longrightarrow X[-1] \longrightarrow \Omega_{x}^{1}(X[-1])[1]
$$

where $\Omega_{X}^{1}(X[-1]):=X_{0}^{*} \in X$ and $\operatorname{Cell}_{0}(X[-1]):=X_{1}^{*} \in X$. Then we have a triangle

$$
X \longrightarrow X_{0}^{*}[2] \longrightarrow X_{1}^{*}[2] \longrightarrow X[1]
$$

which induces a short exact sequence

$$
0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(X_{0}^{*}[2]\right) \longrightarrow \mathrm{H}\left(X_{1}^{*}[2]\right) \longrightarrow 0
$$

and the objects $\mathrm{H}\left(X_{0}^{*}[2]\right), \mathrm{H}\left(X_{1}^{*}[2]\right)$ are injective in mod- X. Hence id $\mathrm{H}(X) \leqslant 1$ and therefore silp mod- $X \leqslant 1$.
Now assume that $n \geqslant 2$ and therefore we have: $\mathcal{T}(X, X[-i])=0,1 \leqslant i \leqslant n-1$. Consider the triangle arising from the tower Cell ${ }_{X[-1]}$:

$$
\Omega_{x}^{n}(X[-1])[n-1] \longrightarrow \operatorname{Cell}_{n-1}(X[-1]) \longrightarrow X[-1] \longrightarrow \Omega_{X}^{n}(X[-1])[n]
$$

Setting $\Omega_{x}^{n}(X[-1]):=X_{0}^{*}$ and $\left.C_{1}=\operatorname{Cell}_{n-1}(X[-1])\right)$, we have a triangle

$$
\begin{equation*}
X_{0}^{*}[n] \longrightarrow C_{1}[1] \longrightarrow X \longrightarrow X^{*}[n+1] \tag{7.1}
\end{equation*}
$$

and we know that $X_{0}^{*} \in \mathcal{X}$ and $C \in X \star X[1] \star \cdots \star \mathcal{X}[n-1]$. Applying H to (7.1) and using that $\mathrm{H}\left(C_{1}[1]\right)=0$ and the fact that X is $(n-1)$-strong, so $\mathcal{T}(X, X[-i])=0,1 \leqslant i \leqslant n-1$, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(X_{0}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{1}[2]\right) \longrightarrow 0 \tag{7.2}
\end{equation*}
$$

and $\mathrm{H}\left(C_{1}[-i]\right)=0$, for $-1 \leqslant i \leqslant n-2$. It follows that for the object $C_{1}[-n+1]$ we have $\mathcal{T}\left(X, C_{1}[-n+1][1]\right)=$ $\mathcal{T}\left(X, C_{1}[-n+1][2]\right)=\cdots=\mathcal{T}\left(X, C_{1}[-n+1][n]\right)=0$, i.e.

$$
C_{1} \in X_{n}^{\top}[n-1]=X[n-1]
$$

It follows that $C_{1}[2] \in \mathcal{X}[n+1]$. We infer that the object $\mathrm{H}\left(C_{1}[2]\right)$ is injective in mod- X and therefore the short exact sequence (7.2) is an injective coresolution of $\mathrm{H}(X)$, i.e. id $\mathrm{H}(X) \leqslant 1$. Hence silp mod- $\mathcal{X} \leqslant 1$.

Case $k=2$. Next assume that $n \geqslant 3$ and $k=2$, so \mathcal{X} is $(n-2)$-strong. Equivalently $\mathcal{T}(X, X[-i])=0$, $1 \leqslant i \leqslant n-2$. Then as above we have a triangle

$$
\begin{equation*}
X \longrightarrow X_{0}^{*}[n+1] \longrightarrow C_{1}[2] \longrightarrow X[1] \tag{7.3}
\end{equation*}
$$

where $X_{0}^{*} \in \mathcal{X}$ and $C_{1} \in \mathcal{X} \star \operatorname{X}[1] \star \cdots \star \mathcal{X}[n-1]$, such that the following sequence is exact:

$$
0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(X_{0}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{1}[2]\right) \longrightarrow 0
$$

Applying H to (7.3) and using that $C_{1}[1] \in X[1] \star \cdots \star X[n]$ and the fact that X is $(n-2)$-strong, the induced long exact sequence shows that $\mathcal{T}\left(\mathcal{X}, C_{1}[1]\right)=\mathcal{T}\left(X, C_{1}\right)=\mathcal{T}\left(X, C_{1}[-1]\right)=\cdots \mathcal{T}\left(X, C_{1}[-n+3]\right)=0$, i.e.

$$
C_{1} \in X_{n-1}^{\top}[n-2]
$$

Now consider the object $C_{1}[2]$ and let

$$
\Omega_{x}^{n}\left(C_{1}[1]\right)[n-1] \longrightarrow \operatorname{Cell}_{n-1}\left(C_{1}[1]\right) \longrightarrow C_{1}[1] \longrightarrow \Omega_{x}^{n}\left(C_{1}[1]\right)[n]
$$

be the triangle arising from the tower Cell $_{C_{1}[2][-1]}=$ Cell $_{C_{1}[1]}$. Setting $\Omega_{x}^{n}\left(C_{1}[1]\right):=X_{1}^{*}$ and $C_{2}:=$ Cell ${ }_{n-1}\left(C_{1}[1]\right)$, we have a triangle

$$
\begin{equation*}
C_{1}[2] \longrightarrow X_{1}^{*}[n+1] \longrightarrow C_{2}[2] \longrightarrow C_{1}[3] \tag{7.4}
\end{equation*}
$$

where $X_{1}^{*} \in \mathcal{X}$ and $C_{1}, C_{2} \in \mathcal{X} \star \operatorname{X}[1] \star \cdots \star X[n-1]$. We claim that $\mathrm{H}\left(C_{1}[3]\right)=0$ and $C_{2}[2] \in X[n+1]$. First note that since \mathcal{X} is $(n-2)$-strong, by Proposition 7.3 it follows that $X[n+1] \subseteq X \star$ X $[1] \star \cdots \star \mathcal{X}[n-(n-2])]=$ $X \star X[1] \star X[2]$. Hence $X[n+2] \subseteq X[1] \star X[2] \star X[3] \subseteq X[1] \star X[2] \star \cdots \star X[n]=X^{\top}$. Since $n \geqslant 3$, it follows that $\mathrm{H}(X[n+3])=0$ and therefore applying H to the triangle (1.2) we infer that $\mathrm{H}\left(C_{1}[3]\right)=0$. On the other hand applying H to the triangle (7.4) and using that X is $(n-2)$-strong and $C_{1} \in X_{n-1}^{\top}[n-2]$, we see that $\mathcal{T}\left(X, C_{2}[-i]\right)=0,-1 \leqslant i \leqslant n-2$. This means that $C_{2}[-n+1] \in X_{n}^{\top}=X$ and therefore

$$
C_{2} \in X_{n}^{\top}[n-1]=X[n-1]
$$

It follows that $C_{2}[2] \in X[n+1]$. Therefore the triangle (7.4) induces a short exact sequence

$$
0 \longrightarrow \mathrm{H}\left(C_{1}[2]\right) \longrightarrow \mathrm{H}\left(X_{1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{2}[2]\right) \longrightarrow 0
$$

where the object $\mathrm{H}\left(C_{2}[2]\right)$ is injective in mod- \mathcal{X}. We infer that the exact sequence

$$
0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(X_{0}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(X_{1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{2}[2]\right) \longrightarrow 0
$$

is an injective resolution of $\mathrm{H}(X)$ and therefore id $\mathrm{H}(X) \leqslant 2$. Hence silp mod- $X \leqslant 2$.
Case $k \leqslant n-1$. Now we treat the general case, so assume $0 \leqslant k \leqslant n-1$ and $n \geqslant 2 k-1$. Working as above we may construct triangles

$$
\begin{gather*}
X \longrightarrow X_{0}^{*}[n+1] \longrightarrow C_{1}[2] \longrightarrow X[1] \tag{7.5}\\
C_{1}[2] \longrightarrow X_{1}^{*}[n+1] \longrightarrow C_{2}[2] \longrightarrow C_{1}[3] \tag{7.6}\\
\vdots \tag{7.7}\\
C_{k-1}[2] \longrightarrow X_{k-1}^{*}[n+1] \longrightarrow C_{k}[2] \longrightarrow C_{k-1}[3]
\end{gather*}
$$

where $X_{i}^{*} \in X$, for $0 \leqslant i \leqslant k-1$, and $C_{i} \in X \star X[1] \star \cdots \star X[n-1]$, for $0 \leqslant i \leqslant k$. It follows that $C_{i}[1] \in X[1] \star X[2] \star \cdots \star X[n]=X^{\top}$, so the above triangles induce exact sequences:

$$
\begin{gather*}
0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(X_{0}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{1}[2]\right) \longrightarrow 0 \tag{7.8}\\
0 \longrightarrow \mathrm{H}\left(C_{1}[2]\right) \longrightarrow \mathrm{H}\left(X_{1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{2}[2]\right) \longrightarrow \mathrm{H}\left(C_{1}[3]\right) \longrightarrow \cdots \tag{7.9}\\
\vdots \tag{7.10}\\
0 \longrightarrow \mathrm{H}\left(C_{k-1}[2]\right) \longrightarrow \mathrm{H}\left(X_{k-1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{k}[2]\right) \longrightarrow \mathrm{H}\left(C_{k-1}[3]\right) \longrightarrow \cdots
\end{gather*}
$$

Clearly then to show that id $\mathrm{H}(X) \leqslant k$, it suffices to show that:

$$
\mathrm{H}\left(C_{i}[3]\right)=0, \quad 1 \leqslant i \leqslant k-1 \quad \text { and } \quad C_{k}[2] \in X[n+1]
$$

Since X is $(n-k)$-strong, by Proposition 7.3 we have $X[n+1] \subseteq X \star X[1] \star \cdots \star X[k]$. It follows that

$$
X[n+i] \subseteq X[i-1] \star X[i] \star \cdots \star X[k+i-1]
$$

and therefore

$$
\begin{equation*}
X[n+i] \subseteq X^{\top}, \quad k \leqslant n-i+1, \quad 2 \leqslant i \leqslant k-1 \tag{7.11}
\end{equation*}
$$

Applying H to the triangle (7.5) and Using (7.11) and the fact that $C_{1}[1] \in \mathcal{X}^{\top}$, we see directly that

$$
\begin{equation*}
\mathrm{H}\left(C_{1}[-n+k+1]\right)=\cdots=\mathrm{H}\left(C_{1}\right)=\mathrm{H}\left(C_{1}[1]\right)=\mathrm{H}\left(C_{1}[3]\right)=\cdots=\mathrm{H}\left(C_{1}[k]\right)=0 \tag{7.12}
\end{equation*}
$$

Then using (7.12) it follows that (7.9) becomes a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}\left(C_{1}[2]\right) \longrightarrow \mathrm{H}\left(X_{1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{2}[2]\right) \longrightarrow 0 \tag{7.13}
\end{equation*}
$$

and the long exact sequence induced after applying H to the triangle (7.6), gives us

$$
\begin{equation*}
\mathrm{H}\left(C_{2}[-n+k]\right)=\cdots=\mathrm{H}\left(C_{2}\right)=\mathrm{H}\left(C_{2}[1]\right)=\mathrm{H}\left(C_{2}[3]\right)=\cdots=\mathrm{H}\left(C_{2}[k-1]\right)=0 \tag{7.14}
\end{equation*}
$$

Continuing inductively in this way we see $\mathrm{H}\left(C_{k-1}[3]\right)=0$ and

$$
\begin{equation*}
\mathrm{H}\left(C_{k}[-n+2]\right)=\cdots=\mathrm{H}\left(C_{-n+1}\right)=\mathrm{H}\left(C_{2}[1]\right)=0 \tag{7.15}
\end{equation*}
$$

This means that $C_{k}[-n+1] \in X_{n}^{\top}=X$ and therefore $C_{k} \in X[n-1]$. Hence $C_{k}[2] \in X[n+1]$ and the exact sequence (7.10) becomes a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}\left(C_{k-1}[2]\right) \longrightarrow \mathrm{H}\left(X_{k-1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{k}[2]\right) \longrightarrow 0 \tag{7.16}
\end{equation*}
$$

and the object $\mathrm{H}\left(C_{k}[2]\right)$ is injective in mod- \mathcal{X}. It follows that the exact sequence
$0 \longrightarrow \mathrm{H}(X) \longrightarrow \mathrm{H}\left(X_{0}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(X_{1}^{*}[n+1]\right) \longrightarrow \cdots \longrightarrow \mathrm{H}\left(X_{k-1}^{*}[n+1]\right) \longrightarrow \mathrm{H}\left(C_{k}[2]\right) \longrightarrow 0$
is an injective coresolution of $\mathrm{H}(X)$ and therefore id $\mathrm{H}(X) \leqslant k$. We conclude that silp mod- $X \leqslant k$.
Finally the next result completes the proof of Theorem 7.5.
Proposition 7.9. Let X be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$. Let $0 \leqslant k \leqslant n-1$ and assume that X is strictly $(n-k)$-strong. If $n \geqslant 2 k-1$, then: G - $\operatorname{dim} \bmod -\mathcal{X}=k$.

Proof. Let $X \in X$. By Proposition 7.7, we have $\mathrm{pd} \mathrm{H}(X[n+1]) \leqslant k$. Assuming that $\mathrm{pd} \mathrm{H}(X[n+1]) \leqslant k-1$, $\forall X \in X$, we show that X is $(n-k+1)$-strong. If $0 \leqslant k \leqslant 1$, then the assertion is clear. So assume that $k \geqslant 2$. We consider triangles $\left(T_{t}\right): A^{t} \longrightarrow X^{t-1} \longrightarrow A^{t-1} \longrightarrow A^{t}[1]$, where each map $X^{t-1} \longrightarrow$ X^{t-1} is a right X-approximation, $t \geqslant 1$, and $A^{0}=X[n+1]$, so that $A^{t}=\Omega_{x}^{t}(X[n+1])$. Applying H to the triangle $\left(T_{1}\right)$, we obtain an exact sequence $0 \longrightarrow \mathrm{H}\left(A^{1}\right) \longrightarrow \mathrm{H}\left(X^{0}\right) \longrightarrow \mathrm{H}(X[n+1]) \longrightarrow 0$ and $\mathcal{T}\left(X, A^{1}[-i]\right)=0,1 \leqslant i \leqslant n-k$. Using this and applying H to the triangle $\left(T_{2}\right)$, we obtain an exact sequence $0 \longrightarrow \mathrm{H}\left(A^{2}\right) \longrightarrow \mathrm{H}\left(X^{1}\right) \longrightarrow \mathrm{H}\left(A^{1}\right) \longrightarrow 0$ and $\mathcal{T}\left(X, A^{2}[-i]\right)=0,1 \leqslant i \leqslant n-k-1$. Continuing in this way, we finally obtain an exact sequence $0 \longrightarrow \mathrm{H}\left(A^{k-1}\right) \longrightarrow \mathrm{H}\left(X^{k-2}\right) \longrightarrow \mathrm{H}\left(A^{k-2}\right) \longrightarrow 0$ and $\mathcal{T}\left(X, A^{k-1}[-i]\right)=0$, $1 \leqslant i \leqslant n-2 k+2$. Since we assumed that $\mathrm{pd} \mathrm{H}(X[n+1]) \leqslant k-1$, the object $\mathrm{H}\left(A^{k-1}\right)$ is projective. Hence there is a map $\alpha: X^{*} \longrightarrow A^{k-1}$, where $X^{*} \in X$, inducing an isomorphism $\mathrm{H}(\alpha): \mathrm{H}\left(X^{*}\right) \xrightarrow{\cong} \mathrm{H}\left(A^{k-1}\right)$. Let $X^{*} \longrightarrow A^{k-1} \longrightarrow B \longrightarrow X^{*}[1]$ be a triangle. Applying H to this triangle and using that X is $(n-k)$-strong, the fact that $\mathrm{H}(\alpha)$ is invertible, and the vanishing condition $\mathcal{T}\left(X, A^{k-1}[-i]\right)=0,1 \leqslant i \leqslant n-2 k+2$, we infer that $\mathcal{T}\left(X, B[-k+1]=\mathcal{T}\left(X, B[-k+2]=\cdots=\mathcal{T}(X, B[-k+n])=0\right.\right.$, i.e. $B[-k] \in X_{n}^{\top}=X$. Hence $B \in X[k]$ and this implies that the map $B \longrightarrow X^{*}[1]$ is zero since it lies in $\mathcal{T}(X, X[-k+1]$ and this space is zero since $1 \leqslant k-1 \leqslant n-k$ and X is $(n-k)$-strong and $n \geqslant 2 k-1$. We infer that A^{k-1} admits a direct sum decomposition $A^{k-1} \cong X^{*} \oplus X^{\prime}[k]$. On the other hand, since $A^{k-1}=\Omega_{X}^{k-1}(X[n+1])$, we know by Remark 2.2 that A^{k-1} lies in $X \star X[1] \star \cdots \star \mathcal{X}[k-1]$. Since clearly any map from an object of $X \star X[1] \star \cdots \star X[k-1]$ to an object from $X[k]$ is zero, it follows that the projection $A^{k-1} \longrightarrow X^{\prime}[k]$ is zero and this implies that $A^{k-1} \cong X^{*} \in \mathcal{X}$. Then A^{k-2} lies in $X \star X[1]$ and using that $A^{i}=\Omega_{x}^{i}(X[n+1]), \forall i \geqslant 1$, it follows inductively that $A^{1} \in \mathcal{X} \star \mathcal{X}[1] \star \cdots X[k-2]$. Then $X[n+1]$ lies in $X \star X[1] \star \cdots X[k-1]$, hence $X[n+1] \subseteq X \star X[1] \star \cdots X[k-1]$. Then Proposition 7.3 shows that X is $(n-k+1)$-strong as required.

Remark 7.10. Let X be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$. Then Theorem 7.5 gives the following picture:

- If X is n-strong, then: G-dim mod- $X=0$.
- If X is strictly $(n-1)$-strong, then: $G-d i m \bmod -X=1$.
- If \mathcal{X} is strictly $(n-2)$-strong and $n \geqslant 3$, then: G-dim mod- $\mathcal{X}=2$.
- If X is strictly $(n-3)$-strong and $n \geqslant 5$, then: G-dim mod- $\mathcal{X}=3$.

```
\vdots
```

- If X is strictly $(n-k)$-strong and $n \geqslant 2 k-1$, then: G-dim $\bmod -\mathcal{X}=k$.
- If X is strictly 3 -strong and $n \leqslant 7$, then: G-dim mod- $X=n-3 \leqslant 4$.
- If X is strictly 2 -strong and $n \leqslant 5$, then: G-dim $\bmod -\mathcal{X}=n-2 \leqslant 3$.
- If X is strictly 1 -strong and $n \leqslant 3$, then: G-dim $\bmod -\mathcal{X}=n-1 \leqslant 2$.
- If $n=1$, then: G-dim mod- $X \leqslant 1$.

Since for an abelian category \mathscr{A} we have $G-\operatorname{dim} \mathscr{A} \leqslant \operatorname{gl} \cdot \operatorname{dim} \mathscr{A}$, with equality if $\operatorname{gl} \cdot \operatorname{dim} \mathscr{A}<\infty$, we have the following consequence.

Corollary 7.11. Let X be an $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 1$. Let $0 \leqslant k \leqslant n-1$ and assume that \mathcal{X} is $(n-k)$-strong. If $n \geqslant 2 k-1$, then either gl. $\operatorname{dim} \bmod -\mathcal{X}=\infty$ or else $\operatorname{gl} . \operatorname{dim} \bmod -\mathcal{X} \leqslant k$. Moreover if gl. dim mod- $\mathcal{X}<\infty$ and \mathcal{X} is strictly $(n-k)$-strong, then $\mathrm{gl} . \operatorname{dim} \bmod -\mathcal{X}=k$.

Corollary 7.12. Let X be an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of $\mathcal{T}, 0 \leqslant k \leqslant n-1$. Assume that $n \geqslant 2 k-1$. Then $\bmod -\mathcal{X}$ is Frobenius if and only if $\mathcal{T}(\mathcal{X}, \mathcal{X}[-n+k-i])=0,1 \leqslant i \leqslant k$.

The next result characterizes strong $(n+1)$-cluster tilting subcategory of \mathcal{T} in terms of vanishing of the obstructions groups $\mathcal{O}_{-,-}$.

Proposition 7.13. Let X be a $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 2$. Then for $1 \leqslant k \leqslant n-1$, the following statements are equivalent:
(i) X is $(n-k)$-strong.
(ii) $\mathcal{O}_{X_{[-i],-}}=0,1 \leqslant i \leqslant n-k$.

In particular if the functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$ is full, then X is $(n-k)$-strong, for any k with $1 \leqslant k \leqslant n-1$, and mod- \mathcal{X} is 1 -Gorenstein.

Proof. (i) \Rightarrow (ii) Since \mathcal{X} is $(n-k)$-strong, we have $\mathrm{H}(\mathcal{X}[-i])=\mathcal{T}(X, X[-i])=0$, for $1 \leqslant i \leqslant n-k$. This clearly implies that $\mathcal{O}_{X_{[-i],-}}=0,1 \leqslant i \leqslant n-k$.
(ii) \Rightarrow (i) Assume that $\mathcal{O}_{X[-i],-}=0,1 \leqslant i \leqslant n-k$, i.e. the maps $\left.\mathcal{T}(X[-i]), B\right) \longrightarrow \operatorname{Hom}(\mathrm{H}(X[-i]), \mathrm{H}(B))$ are surjective, $\forall B \in \mathcal{T}, \forall X \in \mathcal{X}$. For $X \in \mathcal{X}$, consider the triangle

$$
\Omega_{x}^{n}(X[-1])[n-1] \longrightarrow \operatorname{Cell}_{n-1}(X[-1]) \longrightarrow X[-1] \longrightarrow \Omega_{X}^{n}(X[-1])[n]
$$

arising from the cellular tower of $X[-1]$. Then we know that $\Omega_{X}^{n}(X[-1]) \in X$ and Cell ${ }_{n-1}(X[-1]) \in X \star$ $X[1] \star \cdots \star \mathcal{X}[n-1]$. Setting $X^{*}:=\Omega_{X}^{n}(X[-1]) \in X$ and $C:=\operatorname{Cell}_{n-1}(X[-1])[1] \in X[1] \star X[2] \star \cdots \star X[n]$, we have, by Proposition 4.2, that $\mathrm{H}(C)=0$ and moreover there is a triangle

$$
\begin{equation*}
X^{*}[n] \xrightarrow{\beta} C \xrightarrow{\alpha} X \xrightarrow{\gamma} X^{*}[n+1] \tag{T}
\end{equation*}
$$

Applying H to the triangle (T) and using that $\mathrm{H}\left(X^{*}[i]\right)=0,1 \leqslant i \leqslant n$, we get isomorphisms in mod- X :

$$
\begin{equation*}
\mathrm{H}(\alpha[-i]): \mathrm{H}(C[-i]) \xrightarrow{\cong} \mathrm{H}(X[-i]), \quad 1 \leqslant i \leqslant n-1 \tag{7.17}
\end{equation*}
$$

Since $\mathcal{O}_{X[-i], C[-i]}=0,1 \leqslant i \leqslant n-k$, there are maps $\delta_{i}: X[-i] \longrightarrow C[-i]$ in $\mathcal{T}, 1 \leqslant i \leqslant n-k$ such that:

$$
\begin{equation*}
\mathrm{H}\left(\delta_{i}\right)=\mathrm{H}(\alpha[-i])^{-1}: \mathrm{H}(X[-i]) \xrightarrow{\cong} \mathrm{H}(C[-i]), \quad 1 \leqslant i \leqslant n-k \tag{7.18}
\end{equation*}
$$

Then the map $\delta_{i}[i]: X \longrightarrow C$ lies in $\mathcal{T}(X, C)$ and this is zero since $\mathrm{H}(C)=0$. Hence $\delta_{i}[i]=0$ and therefore $\delta_{i}=0,1 \leqslant i \leqslant n-k$. Then the isomorphisms $\mathrm{H}\left(\delta_{i}\right)$ are zero and this implies that $\mathrm{H}(C[-i]) \cong \mathrm{H}(X[-i])=0$, i.e. $\mathcal{T}(X, X[-i])=0,1 \leqslant i \leqslant n-k$. Since X is an arbitrary object of X, we infer that $\mathcal{T}(X, X[-i])=0$, $1 \leqslant i \leqslant n-k$ and consequently the ($n+1$)-cluster tilting subcategory X is ($n-k$)-strong.

If H is full, then $\mathcal{O}_{?,-}=0$, in particular $\mathcal{O}_{X[-i],-}=0,1 \leqslant i \leqslant n-1$. Then by (i), \mathcal{X} is $(n-1)$-strong and therefore $\bmod -\mathcal{X}$ is 1 -Gorenstein by Theorem 7.5.
7.4. Keller-Reiten's Morita Theorem for the $(n+1)$-Cluster category. We use the results of subsection 7.3 to give an application to the characterization of the $(n+1)$-cluster category of a simply laced Dynkin quiver due to Keller-Reiten [22]. First we recall some definitions which also will be used later on.

Assume that the triangulated category \mathcal{T} is k-linear over a field k, all Hom-spaces are finite-dimensional, and admits a Serre functor $\mathbb{S}[13]$. Thus \mathbb{S} is an triangulated auto-equivalence of \mathcal{T}, and for any objects A, B in \mathcal{T} there are natural isomorphisms

$$
\mathrm{DHom}_{\mathcal{T}}(A, B) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{T}}(B, \mathbb{S} A)
$$

where \mathbf{D} denotes the k-dual functor. If \mathcal{T} admits a Serre functor \mathbb{S}, then \mathcal{T} is called (weakly) d-Calabi-Yau, for some $d \geqslant 1$, provided that $\mathbb{S}(?) \cong(?)[d]$ as (additive) triangulated functors.

Let k be a field and H a finite-dimensional hereditary k-algebra. Then it is well-known that the bounded derived category $\mathbf{D}^{b}(\bmod -H)$ of finite-dimensional H-modules admits a Serre functor ν. If $d \geqslant 1$ is an integer, then the d-cluster category $\mathscr{C}_{H}^{(d)}$ of H, as defined by Keller [20], is the orbit category $\mathscr{C}_{H}^{(d)}:=$ $\mathbf{D}^{b}(\bmod -H) /\left(\nu^{-1}[d]\right)^{\mathbb{Z}}$ of $\mathbf{D}^{b}(\bmod -H)$ under the action of the automorphism group generated by $X^{\bullet} \mapsto$ $\nu^{-1}\left(X^{\bullet}[d]\right)$. If $H=k Q$ is the path algebra of a quiver Q, then we say that $\mathscr{C}_{H}^{(d)}$ is the d-cluster category of the quiver Q and we write $\mathscr{C}_{Q}^{(d)}$. As shown by Keller [20], the d-cluster category $\mathscr{C}_{H}^{(d)}$ is a d-Calabi-Yau triangulated category and the projection functor $\pi: \mathbf{D}^{b}(\bmod -k Q) \longrightarrow \mathscr{C}_{H}^{(d)}$ is triangulated.

Recall that a triangulated category \mathcal{T} is algebraic if \mathcal{T} is triangle equivalent to the stable category of a Frobenius category.
Theorem 7.14. [22] Let \mathcal{T} be a k-linear triangulated category with finite-dimensional Hom-spaces over an algebraically closed field k. Then for an integer $n \geqslant 1$, the following statements are equivalent.
(i) \mathcal{T} is triangle equivalent to the $(n+1)$-cluster category $\mathscr{C}_{Q}^{(n+1)}$ of some simply laced Dynkin quiver Q.
(ii) \mathcal{T} is algebraic $(n+1)$-Calabi-Yau and admits a $(n-1)$-strong $(n+1)$-cluster tilting object T such that the endomorphism algebra $\operatorname{End}_{\mathcal{T}}(T)$ has finite global dimension.

Proof. (i) \Rightarrow (ii) If condition (i) holds, then by Keller [20] we know that $\mathscr{C}_{Q}^{(n+1)}$ is algebraic ($n+1$)-Calabi-Yau and it is shown by Keller-Reiten in [21] that $\pi(H)$ is a $(n+1)$-cluster tilting object in $\mathscr{C}_{Q}^{(n+1)}$, where $H=k Q$ considered as a stalk complex in $\mathbf{D}^{b}(\bmod -H)$. Moreover in [22] it is shown that the $(n+1)$-cluster tilting object $\pi(H)$ is $(n-1)$-strong and its endomorphism algebra End $(\pi(H))$ has finite global dimension.
(ii) \Rightarrow (i) Conversely if condition (ii) holds, then by Theorem 7.5 we have that $\operatorname{End}_{\mathcal{T}}(T)$ is 1-Gorenstein and then by Corollary 7.11, $\operatorname{End}_{\mathcal{T}}(T)$ is hereditary. Setting $H=\operatorname{End}_{\mathcal{T}}(T)$, by Theorem 4.2 in Keller-Reiten [22], there is a triangle equivalence $F: \mathcal{T} \underset{\rightarrow}{\approx} \mathscr{C}_{H}^{(n+1)}$ such that $F(T)=\pi(H)$.
7.5. Abelian Subcategories. Let X be an $(n+1)$-cluster tilting subcategory of \mathcal{T}. We show that if the cluster tilted category mod- X has finite global dimension, and X is $(n-k)$-strong, for some $0 \leqslant k \leqslant \frac{n}{2}$, then $\bmod -\mathcal{X}$ can be realized as a full subcategory of \mathcal{T}, in some cases via a ∂-functor.

For an abelian category \mathcal{M} we denote by $\operatorname{Proj} \leqslant k \mathcal{M}$, resp. $\operatorname{Proj}{ }^{<\infty} \mathcal{M}$, the full subcategory of \mathcal{M} consisting of the objects with projective dimension $\leqslant k$, resp. $<\infty$.
Proposition 7.15. Let \mathcal{X} be a contravariantly finite t-rigid subcategory of \mathcal{T}, $t \geqslant 1$, and assume that \mathcal{X} is $(t-1)$-strong, if $t \geqslant 2$. Then the functor $\mathrm{H}: \mathcal{T} \longrightarrow \bmod -\mathcal{X}$ induces a full embedding

$$
\mathrm{H}:(X \star X[1] \star \cdots \star X[t]) \cap X_{t}^{\top}[t+1] \quad \longrightarrow \quad \text { Proj }{ }^{\leqslant t} \bmod -X
$$

which is an equivalence if X is t-strong.
Proof. Set $\mathcal{U}_{t}:=(X \star X[1] \star \cdots \star X[t]) \cap X_{t}^{\top}[t+1]$ and $\mathrm{H}_{t}:=\mathrm{H} \mid u_{t}$. First note that by Theorem 5.4, we have $\operatorname{pd} \mathrm{H}(A) \leqslant t$, for any object $A \in \mathcal{U}_{t}$, so we have a functor $\mathrm{H}_{t}: \mathcal{U}_{t} \longrightarrow \operatorname{Proj}{ }^{\leqslant k} \bmod -X$.

Let $\alpha: A \longrightarrow B$ be a map in \mathcal{U}_{t} such that $\mathrm{H}(\alpha)=0$. Then α factorizes through the map $h_{A}^{0}: A \longrightarrow$ $\Omega_{X}^{1}(A)[1]$, say via a map $\beta: \Omega_{x}^{1}(A)[1] \longrightarrow B$. Since X is t-rigid and A lies in $X \star X[1] \star \cdots \star X[t]$, it follows that $\Omega_{X}^{t}(A)$ lies in X and then it is easy to see that $\Omega_{X}^{1}(A)$ lies in $X \star X[2] \star \cdots \star \mathcal{X}[t-1]$, hence $\Omega_{X}^{t}(A)[1] \in X[1] \star X[2] \star \cdots \star \mathcal{X}[t]$. Since $B \in X_{t}^{\top}[t+1]$, we have $\mathcal{T}(X, B[-i])=0,1 \leqslant i \leqslant t$. Since, as easily seen, any map from an object form $X[1] \star X[2] \star \cdots \star X[t]$ to an object in $X_{t}^{\top}[t+1]$ is zero, we have $\beta=0$. Therefore $\alpha=0$ and H_{t} is faithful. Next let $\alpha: \Omega_{X}^{1}(A) \longrightarrow B$ be an \mathcal{X}-ghost map. Then α factorizes through the map $h_{A}^{1}: \Omega_{X}^{1}(A) \longrightarrow \Omega_{X}^{2}(A)[1]$, say via a map $\beta: \Omega_{X}^{2}(A)[1] \longrightarrow B$. As above, $\Omega_{X}^{2}(A)$ lies in $X \star X[1] \star \cdots \star X[t-2]$, hence $\Omega_{X}^{2}(A)[1] \in X[1] \star X[2] \star \cdots \star X[t-1]$. Since $B \in X_{t}^{\top}[t+1]$, it follows directly that any map from an object form $X[1] \star X[2] \star \cdots \star \mathcal{X}[t-1]$ to an object in $X_{t}^{\top}[t+1]$ is zero, hence $\beta=0$,
and therefore $\alpha=0$. Consequently $\operatorname{Gh}_{x}\left(\Omega_{x}^{1}(A), B\right)=0$, and therefore the obstruction group $\mathcal{O}_{A, B}$ vanishes. Then from Proposition 3.6, we infer that the map $\mathcal{T}(A, B) \longrightarrow \operatorname{Hom}(\mathrm{H}(A), \mathrm{H}(B)$ is surjective, hence $\mathrm{H}(\alpha)=\widetilde{\alpha}$ for some map $\alpha: A \longrightarrow B$. It follows that H_{t} is full.

Now consider an object $F \in \bmod -\mathcal{X}$, with pd $F \leqslant t$. Then $\mathrm{H}(A)=F$, and we may choose $A \in \mathcal{X} \star \mathcal{X}[1]$. We have a projective resolutions $0 \longrightarrow \mathrm{H}\left(X_{A}^{t}\right) \longrightarrow \mathrm{H}\left(X^{t-1}\right) \longrightarrow \cdots \xrightarrow{H}\left(X^{1}\right) \longrightarrow \mathrm{H}\left(X^{0}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$ in mod- X. The last map of the resolution gives us a map $X^{t} \longrightarrow X^{t-1}$ which induces a triangle $X^{t} \longrightarrow$ $X^{t-1} \longrightarrow A^{t-1} \longrightarrow X^{t}[1]$. Applying H to this triangle and using that X is $(t-1)$-strong, so $\mathcal{T}(X, X[-i])=0$, $1 \leqslant i \leqslant t-1$, we see easily that $\mathcal{T}\left(X, A^{t-1}[-i]\right)=0,1 \leqslant i \leqslant t-1$, and moreover $\operatorname{Im}\left(\mathrm{H}\left(X^{t-1}\right) \longrightarrow \mathrm{H}\left(X^{t-2}\right)\right)=$ $\mathrm{H}\left(A^{t-1}\right)$. Consider the induced monomorphism $\mathrm{H}\left(A^{t-1}\right) \longrightarrow \mathrm{H}\left(X^{t-2}\right)$. Since $X^{t} \in \mathcal{X}$, we have $A^{t-1} \in X_{\star} X^{X}[1]$ and $\Omega_{X}^{1}\left(A^{t-1}\right)=X^{t} \in X$. Since X is $(t-1)$-strong, by Lemma 6.4 , we have $\operatorname{Gh}_{X}\left(\Omega_{X}^{1}\left(A^{t-1}\right), X^{t-2}\right)=0$ and therefore $\mathcal{O}_{A^{t-1}, X^{t-2}}=0$. It follows that the monomorphism $\mathrm{H}\left(A^{t-1}\right) \longrightarrow \mathrm{H}\left(X^{t-2}\right)$ is induced by a map $A^{t-1} \longrightarrow X^{t-2}$. Consider a triangle $A^{t-1} \longrightarrow X^{t-2} \longrightarrow A^{t-2} \longrightarrow A^{t-1}[1]$. As above, applying H to this triangle we see easily that $\mathcal{T}\left(X, A^{t-2}[-i]\right)=0,1 \leqslant i \leqslant t-1$, and moreover $\operatorname{Im}\left(\mathrm{H}\left(X^{t-2}\right) \longrightarrow \mathrm{H}\left(X^{t-3}\right)\right)=$ $\mathrm{H}\left(A^{t-2}\right)$. Moreover we have $A^{t-2} \in X \star X[1] \star X[2]$ and $\Omega_{X}^{1}\left(A^{t-2}\right)=A^{t-1} \in X \star X[1]$. By Lemma 6.4 we have $\operatorname{Gh}_{X}\left(\Omega_{X}^{1}\left(A^{t-2}\right), X^{t-3}\right)=0$, so $\mathcal{O}_{A^{t-2}, X^{t-3}}=0$. We infer that the monomorphism $\mathrm{H}\left(A^{t-2}\right) \longrightarrow \mathrm{H}\left(X^{t-3}\right)$ is induced by a map $A^{t-2} \longrightarrow X^{t-3}$. Considering a triangle $A^{t-2} \longrightarrow X^{t-3} \longrightarrow A^{t-3} \longrightarrow A^{t-2}[1]$ and continuing in this way, we construct triangles $A^{j} \longrightarrow X^{j-1} \longrightarrow A^{j-1} \longrightarrow A^{j}[1]$, with $X^{j} \in X$, and exact sequences $0 \longrightarrow \mathrm{H}\left(A^{j}\right) \longrightarrow \mathrm{H}\left(X^{j-1}\right) \longrightarrow \mathrm{H}\left(A^{j-1}\right) \longrightarrow 0$, for $1 \leqslant j \leqslant t$, where $A^{t}=X^{t}$, and the objects A^{j} satisfy $\mathcal{T}\left(X, A^{j}[-i]\right)=0,1 \leqslant i \leqslant t-1$. In particular for $j=1$, we have a triangle $A^{1} \longrightarrow X^{0} \longrightarrow$ $A^{0} \longrightarrow A^{1}[1]$, where $A^{0} \in X \star X[1] \star \cdots \star \mathcal{X}[t]$ and $\mathcal{T}\left(X, A^{0}[-i]\right)=0.1 \leqslant i \leqslant t-1$, and this implies that $\mathrm{H}\left(A^{0}\right) \cong \mathrm{H}(A) \cong F$. Hence F is isomorphic to an object $\mathrm{H}\left(A^{0}\right)$, where A^{0} lies in $(X \star X[1] \star \cdots \star \mathcal{X}[t]) \cap X_{t-1}^{\top}[t]$. Finally assume that \mathcal{X} is t-strong, i.e. we have in addition $\mathcal{T}(X, X[-t])=0$. Then applying H to the triangle $A^{1} \longrightarrow X^{0} \longrightarrow A^{0} \longrightarrow A^{1}[1]$ and using that $A^{1}, A^{0} \in X_{t-1}^{\top}[t]$, we have directly that $\mathrm{H}\left(A^{0}[-t]\right)=0$, so A^{0} lies in $X_{t}^{\top}[t+1]$ and therefore $A^{0} \in \mathcal{U}_{t}$. This shows that $\mathrm{H}: \mathcal{U}_{t} \longrightarrow \operatorname{Proj} \leqslant t \bmod -\mathcal{X}$ is essentially surjective.
Theorem 7.16. Let \mathcal{X} be an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $0 \leqslant k \leqslant n-1$.
(i) If mod- X has finite global dimension, and $n \geqslant 2 k$, then gl. $\operatorname{dim} \bmod -X \leqslant k$ and there is an equivalence

$$
\mathrm{H}:(X \star X[1] \star \cdots \star X[k]) \cap X_{k}^{\top}[k+1] \xrightarrow{\approx} \bmod -X
$$

(ii) If $k=1$, then the induced full embedding $\mathrm{T}: \bmod -\mathcal{X} \longrightarrow \mathcal{T}$ is a ∂-functor, which extends uniquely to an additive functor $\mathbf{D}^{b}(\bmod -\mathcal{X}) \longrightarrow \mathcal{T}$ commuting with the shifts.
Proof. Under the imposed assumptions, as in the proof of Proposition 7.7, we see that X is $(k-1)$-strong. By Proposition 7.15, the functor H induces a full embedding $\mathrm{H}_{k}:(X \star X[1] \star \cdots \star X[k]) \cap X_{k}^{\top}[k+1] \longrightarrow$ Proj${ }^{\leqslant k} \bmod -\mathcal{X}$. Since, by Theorem $7.5, \bmod -\mathcal{X}$ is k-Gorenstein, finiteness of gl. dim mod- \mathcal{X} implies that gl. dim $\bmod -X \leqslant k$, and therefore $\bmod -X=\operatorname{Proj}{ }^{\leqslant k} \bmod -X$. On the other hand since $n \geqslant 2 k$, it follows that $X_{n-k}^{\top}[n-k+1] \subseteq X_{k}^{\top}[k+1]$, i.e. X is k-strong. Then by Proposition 7.15 , the functor H_{k} is essentially surjective, hence an equivalence. Finally assume that $k=1$, so $n \geqslant 2, \mathcal{X}$ is $(n-1)$-strong, and mod- \mathcal{X} is hereditary. By Corollary 3.9 we have an isomorphism $\mathcal{T}(A, B[1]) \cong \operatorname{Ext}^{1}(\mathrm{H}(A), \mathrm{H}(B)), \forall A, B \in(X \star X[1]) \cap X_{1}^{\top}[2]$. It follows easily from this that the induced fully faithful functor $\mathrm{T}: \bmod -\mathcal{X} \approx(X \star X[1]) \cap X_{1}^{\top}[2] \longrightarrow \mathcal{T}$ is a ∂-functor; details are left to the reader. By a result of Amiot [1], T extends uniquely to an additive functor $\mathbf{D}^{b}(\bmod -\mathcal{X}) \longrightarrow \mathcal{T}$ commuting with the shift functors.

Note that the case $n=k=1$, where the strongness condition is vacuous, the functor T gives the full embedding $\operatorname{Inj} \bmod -X \approx X[2] \longrightarrow \mathcal{T}$.

8. Gorenstein-Projectives

Our aim in this section is to investigate the full subcategory of Gorenstein-projective objects of the cluster tilted category mod- X, where X is a $(n-1)$-strong $(n+1)$-cluster tilting subcategory.

For convenience, we call in this section $(n-1)$-strong $(n+1)$-cluster tilting subcategories simply strong ($n+1$)-cluster tilting subcategories.
8.1. Gorenstein-Projectives. To proceed further it is convenient to have a description of the full subcategories of Gorenstein-projective and Gorenstein-injective objects of the cluster tilted category mod- \mathcal{X}.

Let \mathscr{A} be an abelian category. A complex of projective objects $P^{\bullet}: \cdots \longrightarrow P^{-1} \longrightarrow P^{0} \longrightarrow P^{1} \longrightarrow \cdots$ is called totally acyclic if P^{\bullet} and the induced complex $\mathscr{A}\left(P^{\bullet}, Q\right)$ are acyclic, for any projective object Q of \mathscr{A}. Dually a complex of injective objects $I^{\bullet}: \cdots \longrightarrow I^{-1} \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \cdots$ is called totally acyclic if I^{\bullet} and the induced complex $\mathscr{A}\left(J, I^{\bullet}\right)$ are acyclic for any injective object J of \mathscr{A}.

Definition 8.1. (i) An object $G \in \mathscr{A}$ is called Gorenstein-projective if $G \cong \operatorname{Coker}\left(P^{-1} \longrightarrow P^{0}\right)$ for some totally acyclic complex P^{\bullet} of projectives.
(ii) An object $G \in \mathscr{A}$ is called Gorenstein-injective if $G \cong \operatorname{Ker}\left(I^{0} \longrightarrow I^{1}\right)$ for some totally acyclic complex I^{\bullet} of injectives.
The full subcategory of Gorenstein-projective, resp. Gorenstein-injective, objects of \mathscr{A} is denoted by GProj \mathscr{A}, resp. GInj \mathscr{A}. Also we denote by GProj \mathscr{A}, resp. $\overline{\operatorname{GInj}} \mathscr{A}$, the stable category of GProj \mathscr{A}, resp. $\operatorname{Glnj} \mathscr{A}$, modulo projectives, resp. injectives.

In the following remark we remind the reader of basic properties of Gorenstein categories which will be used in the sequel. We refer to [12, 7], for more detailed discussions.

Remark 8.2. Let \mathscr{A} be an abelian category with enough projective and/or injective objects.

- For any objects $G_{1} \in \operatorname{GProj} \mathscr{A}, G_{2} \in \operatorname{GInj} \mathscr{A}, A \in \mathscr{A}$, and any $k \geqslant 1$ there are isomorphisms:

$$
\operatorname{Ext}^{k}\left(G_{1}, A\right) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\Omega^{k} G_{1}, A\right) \quad \text { and } \quad \operatorname{Ext}^{k}\left(A, G_{2}\right) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(A, \Sigma^{k} G_{2}\right)
$$

- The categories GProj \mathscr{A} and $\operatorname{GInj} \mathscr{A}$ are Frobenious exact subcategories of \mathscr{A}. Hence the stable categories GProj \mathscr{A} and $\overline{\mathrm{GInj}} \mathscr{A}$ are triangulated.
- If \mathscr{A} is Gorenstein then Proj ${ }^{<\infty} \mathscr{A}=\operatorname{Inj}{ }^{<\infty} \mathscr{A}$; if \mathscr{A} is of Goresntein dimension G-dim $\mathscr{A}=d$, then $\operatorname{Proj}^{<\infty} \mathscr{A}=\operatorname{Proj}{ }^{\leqslant d} \mathscr{A}$ (and dually $\operatorname{Inj}{ }^{<\infty} \mathscr{A}=\operatorname{Inj}{ }^{\leqslant d} \mathscr{A}$). Moreover we have GProj $\mathscr{A}=\Omega^{d} \mathscr{A}$ and GInj $\mathscr{A}=$ $\Sigma^{d} \mathscr{A}$, see [7, Theorem 4.16]. It follows that if G-dim $\mathscr{A} \leqslant 1$, then GProj \mathscr{A} consists of the subobjects of the projective objects and $G \operatorname{lnj} \mathscr{A}$ consists of the factors of the injectives.
- The inclusion functor $\underline{\operatorname{GProj} \mathscr{A}} \longrightarrow \mathscr{A}$ admits as a right adjoint the functor $\Omega^{-d} \Omega^{d}: \mathscr{A} \longrightarrow \underline{\text { GProj }} \mathscr{A}$. Dually the inclusion functor $\overline{\mathrm{GInj}} \mathscr{A} \longrightarrow \overline{\mathscr{A}}$ admits as a left adjoint the functor $\Sigma^{-d} \Sigma^{d}: \overline{\mathscr{A}} \longrightarrow \overline{\mathrm{GInj}} \mathscr{A}$.

Let A be in \mathcal{T}. Then there exists a triangle

$$
\begin{equation*}
\Omega_{x}^{n}(A[n])[-1] \longrightarrow \text { Cell }_{n-1}(A[n])[-n] \longrightarrow A \longrightarrow \Omega_{x}^{n}(A[n]) \tag{8.1}
\end{equation*}
$$

where the last map $\omega_{A[n]}^{n-1}[-n]: A \longrightarrow \Omega_{X}^{n}(A[n])$ is a left X-approximation of A and

$$
\operatorname{Cell}_{n-1}(A[n])[-n] \in X[-n] \star X[-n+1] \star \cdots \star X[-1]
$$

Lemma 8.3. Assume that the $(n+1)$-cluster tilting subcategory X is strong. Then the full subcategory Proj mod- \mathcal{X}, resp. Inj mod- \mathcal{X}, of projective, resp. injective, objects of mod- \mathcal{X} is functorially finite in mod- \mathcal{X}. Moreover for any object $A \in \mathcal{T}$, the map

$$
\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right): \mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}(A[n])\right)
$$

is a left projective approximation of $\mathrm{H}(A)$, and the object $\mathrm{H}(A)$ is Gorenstein-projective if and only if the map $\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right)$ is a monomorphism.
Proof. We know that mod- \mathcal{X} has enough projective and enough injective objects. Hence Proj mod- \mathcal{X} is contravariantly finite and $\operatorname{lnj} \bmod -\mathcal{X}$ is covariantly finite. Let $F=\mathrm{H}(A) \in \bmod -X$. We claim that the map $\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right): \mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{X}^{n}(A[n])\right)$ induced by the triangle (8.1) is a left projective approximation of $\mathrm{H}(A)$. Indeed $\mathrm{H}\left(\Omega_{x}^{n}(A[n])\right)$ is projective since $\Omega_{X}^{n}(A[n]) \in X$. Let $\alpha: \mathrm{H}(A) \longrightarrow \mathrm{H}(X)$ be a map, where $X \in X$. By applying the Octahedral axiom to the composition $\gamma_{A}^{1} \circ \omega_{A[n]}^{n-1}[-n]:$ Cell $_{1}(A) \longrightarrow A \longrightarrow \Omega_{X}^{n}(A[n])$, it is easy to see that there is triangle $\Omega_{x}^{n}(A[n])[-1] \longrightarrow B \longrightarrow \operatorname{Cell}_{1}(A) \longrightarrow \Omega_{x}^{n}(A[n])$, where B lies in $X[1] \star \cdots \star X[n-1] \star X[-n] \star \cdots \star X[-1]$. Now since $\operatorname{Cell}_{1}(A)$ lies in $X \star X[1]$, the composition $\mathrm{H}\left(\gamma_{A}^{1}\right) \circ \alpha$: $\mathrm{H}\left(\right.$ Cell $\left._{1}(A)\right) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(X)$ is of the form $\mathrm{H}(\beta)$ for some map $\beta:$ Cell $_{1}(A) \longrightarrow X$. Since the $(n+1)$-cluster tilting subcategory X is strong, any map from an object in $X[1] \star \cdots \star X[n-1] \star X[-n] \star \cdots \star X[-1]$ to an object in \mathcal{X} is clearly zero, and therefore the composition of $B \longrightarrow \operatorname{Cell}_{1}(A)$ with β is zero. Hence there exists a map $\rho: \Omega_{X}^{n}(A[n]) \longrightarrow X$ such that $\beta=\gamma_{A}^{1} \circ \omega_{A[n]}^{n-1}[-n] \circ \rho$. Then $\mathrm{H}\left(\gamma_{A}^{1}\right) \circ \alpha=\mathrm{H}(\beta)=\mathrm{H}\left(\gamma_{A}^{1}\right) \circ \mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right) \circ \mathrm{H}(\rho)$, and since $\mathrm{H}\left(\gamma_{A}^{1}\right)$ is invertible, we have $\alpha=\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right) \circ \mathrm{H}(\rho)$. This shows that $\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right)$ is a left projective approximation of $\mathrm{H}(A)$ and Proj mod-X is covariantly finite in mod-X. If $\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right)$ is a monomorphism, then $\mathrm{H}(A)$ is Gorenstein-projective as a subobject of the projective object $\mathrm{H}\left(\Omega_{X}^{n}(A[n])\right.$. Conversely if $\mathrm{H}(A)$ is Gorenstein-projective, then there is a monomorphism $\mu: \mathrm{H}(A) \longrightarrow \mathrm{H}(X)$, where $X \in X$. Since μ factorizes through $\mathrm{H}\left(\omega_{A[n]}^{n-1}[-n]\right)$, it follows that the latter is a monomorphism.

The proof that $\operatorname{Inj} \bmod -X$ is contravariantly finite is dual and is left to the reader.
The following characterization of Gorenstein-projective functors will be useful later; its dual version concerning Gorenstein-injective functors is left to the reader.

Lemma 8.4. Let X be a strong $(n+1)$-cluster tilting subcategory of \mathcal{T}. Then for any object $A \in \mathcal{T}$ the following statements are equivalent.
(i) $\mathrm{H}(A)$ is Gorenstein-projective.
(ii) The map $A \longrightarrow \Omega_{x}^{n}(A[n])$ induces a monomorphism $\mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}(A[n])\right)$.
(iii) Case $n \geqslant 2: A \in\left({ }^{\top} X \cap X^{\top}\right) \star X$, or equivalently $\mathrm{H}\left(\operatorname{Cell}_{n-1}(A[n])[-n]\right)=0$.

Case $n=1: \operatorname{Gh}(\mathcal{X}[-1], A)=\mathcal{T}(X[-1], A)$, i.e. any map $X[-1] \rightarrow A$, with $X \in \mathcal{X}$ is \mathcal{X}-ghost.
Proof. Since mod- \mathcal{X} is 1-Gorenstein, by Remark 8.2, an object $F=\mathrm{H}(A)$ in mod- \mathcal{X} is Gorenstein-projective if and only if F is a subobject of a projective object. Clearly this is equivalent to say that F admits a monomorphic left (Proj mod-X)-approximation. Then the equivalence (i) \Leftrightarrow (ii) follows from Corollary 8.3.
(ii) \Leftrightarrow (iii) If $n \geqslant 2$, then applying $\mathrm{H}(A)$ to the triangle (8.1) we have a long exact sequence

$$
\cdots \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\operatorname{Cell}_{n-1}(A[n])[-n]\right) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}(A[n])\right) \longrightarrow \cdots
$$

Since $\Omega_{x}^{n}(A[n]) \in X$ it follows that $\mathrm{H}\left(\Omega_{x}^{n}(A[n])[-1]\right)=0$. Hence the map $\mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{X}^{n}(A[n])\right)$ is a monomorphism if and only if $\mathrm{H}\left(\right.$ Cell $\left._{n-1}(A[n])[-n]\right)=0$. Since always Cell ${ }_{n-1}(A[n])$ lies in $(X \star \cdots \star X[n-1])$ it follows that Cell ${ }_{n-1}(A[n])[-n]$ lies in $(X[-n] \star \cdots \star \mathcal{X}[-1])$ which is equal to ${ }^{\top} X$ by Corollary 4.6. Hence $\mathrm{H}\left(\right.$ Cell $\left._{n-1}(A[n])[-n]\right)=0$ if and only if $\operatorname{Cell}_{n-1}(A[n])[-n]$ lie in $\operatorname{Ker} \mathrm{H}=X^{\top}$, and therefore if and only if Cell $_{n-1}(A[n])[-n]$ lies in ${ }^{\top} X \cap X^{\top}$. Using the triangle (8.1) this in turn is equivalent to $A \in\left({ }^{\top} X \cap X^{\top}\right) \star X$. If $n=1$, then the triangle (8.1) takes the form $X_{A[1]}^{1}[-1] \longrightarrow X_{A[1]}^{0}[-1] \longrightarrow A \longrightarrow X_{A[1]}^{1}$ and then $\mathrm{H}(A)$ is Gorenstein-projective iff the middle map is killed by H , equivalently the middle map factorizes through X^{\top}. Since $n=1$ we have $X^{\top}=X[1]$ and then clearly $\mathrm{H}(A)$ is Gorenstein-projective if and only if any map $X[-1] \longrightarrow A$, with $X \in X$, is X-ghost, i.e. factorizes through an object from X [1].

It is well known that over a d-Gorenstein abelian category \mathscr{A} the full subcategory of Gorenstein-projectives is contravariantly finite and the full subcategory of objects with finite projective dimension which coincides with the full subcategory of objects with finite injective dimension, is functorially finite. The next result describes the Gorenstein-projective approximation and the left and right approximation by objects of finite projective dimension of any object of the 1-Gorenstein abelian category mod- X.

Proposition 8.5. Let \mathcal{X} be a strong $(n+1)$-cluster tilting subcategory of \mathcal{T}. Then the full subcategory $\left({ }^{\top} X \cap X^{\top}\right) \star \mathcal{X}$ is contravariantly finite in \mathcal{T}. More precisely for any object $A \in \mathcal{T}$, there exists a triangle

$$
\begin{equation*}
\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right) \longrightarrow G_{A} \longrightarrow A \longrightarrow \Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)[1] \tag{8.2}
\end{equation*}
$$

where $\Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right) \in \mathcal{X}$, and the map $G_{A} \longrightarrow A$ is a right $\left({ }^{\top} \mathcal{X} \cap X^{\top}\right) \star \mathcal{X}$-approximation of A. Moreover the above triangle induces a short exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right) \longrightarrow \mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0
$$

and the map $\mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}(A)$ is a right Gorenstein-projective approximation of $\mathrm{H}(A)$.
Proof. Consider the triangle arising from the cellular tower of $A[-1]$.

$$
\operatorname{Cell}_{n-1}(A[-1])[1] \longrightarrow A \longrightarrow \Omega_{x}^{n}(A[-1])[n+1] \longrightarrow \operatorname{Cell}_{n-1}(A[-1])[2]
$$

Then we know that $\Omega_{x}^{n}(A[-1])$ lies in X. Since the injective object $\mathrm{H}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)$ has projective dimension at most one, we have a triangle

$$
\Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right) \longrightarrow X_{\Omega_{x}^{n}(A[-1])[n+1]}^{0} \longrightarrow \Omega_{X}^{n}(A[-1])[n+1] \longrightarrow \Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)
$$

where the object $\Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)$ lies in X. Now form the weak-pull back of the first triangle along the map $X_{\Omega_{x}^{n}(A[-1])[n+1]}^{0} \longrightarrow \Omega_{X}^{n}(A[-1])[n+1]$ in the sense of [8]:

Since the object Cell $_{n-1}(A[-1])[1]$ lies clearly in ${ }^{\top} X \cap X^{\top}$ it follows that G_{A} lies in $\left({ }^{\top} X \cap X^{\top}\right) \star \mathcal{X}$. This implies, by Lemma 8.4, that the object $\mathrm{H}\left(G_{A}\right)$ is Gorenstein-projective. Applying the functor H to the above diagram of triangles and using that the maps $\mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}\left(X_{\Omega_{x}^{n}(A[-1])[n+1]}^{0}\right) \longleftarrow \mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right)$ are monomorphisms we deduce that we have a short exact sequence $0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right) \longrightarrow$ $\mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$. Since $\mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right)$ is projective in mod-X, it follows that the map $\mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}(A)$ is a right Gorenstein-projective approximation of $\mathrm{H}(A)$. On the other hand let M be in $\left({ }^{\top} \mathcal{X} \cap X^{\top}\right) \star \mathcal{X}$ and let $K \longrightarrow M \longrightarrow X \longrightarrow K[1]$ be a triangle, where $K \in{ }^{\top} X \cap X^{\top}$ and $X \in X$. Also let $M \longrightarrow A$ be a map. The composition $K \longrightarrow M \longrightarrow A \longrightarrow \Omega_{x}^{n}(A[-1])[n+1]$, is zero since $K \in X^{\top}=X[1] \star \cdots \star X[n]$ and $\Omega_{X}^{n}(A[-1])[n+1] \in X[n+1]$. This implies that the composition $K \longrightarrow M \longrightarrow$ $A \longrightarrow \Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)[1]$ is zero and therefore the composition $M \longrightarrow A \longrightarrow \Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)[1]$ factorizes through the map $M \longrightarrow X$. Since $X \in \mathcal{X}$ and $\Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)[1]$ lies in X [1], it follows that the composition $M \longrightarrow A \longrightarrow \Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)[1]$ is zero and therefore the map $M \longrightarrow A$ factorizes through the map $G_{A} \longrightarrow A$. This shows that $G_{A} \longrightarrow A$ is a right $\left(\left({ }^{\top} X \cap X^{\top}\right) \star X\right)$-approximation of A, i.e. $\left({ }^{\top} X \cap X^{\top}\right) \star \mathcal{X}$ is contravariantly finite in \mathcal{T}.

Corollary 8.6. Let \mathcal{X} be a strong $(n+1)$-cluster tilting subcategory of \mathcal{T}. Then the right adjoint of the inclusion Gproj mod- $\mathcal{X} \longrightarrow$ mod $-\mathcal{X}$ is given by:

$$
\Omega^{-1} \Omega: \underline{\bmod -X} \longrightarrow \underline{\text { Gproj } \bmod -X, \quad \Omega^{-1} \Omega \mathrm{H}(A)=\mathrm{H}\left(G_{A}\right), ~}
$$

Let $A \in \mathcal{T}$ and consider the exact sequence $0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right) \longrightarrow \mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}(A) \longrightarrow 0$ of the above Proposition, where $\mathrm{H}\left(G_{A}\right) \longrightarrow \mathrm{H}(A)$ is a right Gorenstein-projective approximation of $\mathrm{H}(A)$. Also consider the triangle, where the middle map is a left \mathcal{X}-approximation of G_{A} :

$$
\operatorname{Cell}_{n-1}\left(G_{A}[n]\right)[-n] \longrightarrow G_{A} \longrightarrow \Omega_{x}^{n}\left(G_{A}[n]\right) \longrightarrow \operatorname{Cell}_{n-1}\left(G_{A}[n]\right)[-n+1]
$$

Forming the Octahedral diagram induced by the composition $\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right) \longrightarrow G_{A} \longrightarrow \Omega_{x}^{n}\left(G_{A}[n]\right)$ we obtain two triangles:

$$
\begin{gather*}
A \longrightarrow P^{A} \longrightarrow \operatorname{Cell}_{n-1}(A[-1])[2] \longrightarrow A[1] \tag{8.3}\\
\Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right) \longrightarrow \Omega_{x}^{n}\left(G_{A}[n]\right) \longrightarrow P_{A} \longrightarrow \Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)[1] \tag{8.4}\\
\text { Finally set } \mathrm{H}\left(G^{A}\right):=\operatorname{Im}\left(\Omega_{x}^{n}\left(G_{A}[n]\right) \longrightarrow \text { Cell }_{n-1}\left(G_{A}[n]\right)[-n+1]\right) \text { for some object } G^{A} \in \mathcal{T} \text {. }
\end{gather*}
$$

Proposition 8.7. Let X be a strong $(n+1)$-cluster tilting subcategory of \mathcal{T}, and let A be an object of \mathcal{T}.
(i) $\operatorname{pdH}\left(P_{A}\right) \leqslant 1$ and the object $\mathrm{H}\left(G^{A}\right)$ is Gorenstein-projective.
(ii) There is a short exact sequence

$$
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(P^{A}\right) \longrightarrow \mathrm{H}\left(G^{A}\right) \longrightarrow 0
$$

where the map $\mathrm{H}(A) \longrightarrow \mathrm{H}\left(P^{A}\right)$ is a left (Proj$\left.\leqslant^{1} \bmod -X\right)$-approximation of $\mathrm{H}(A)$.
Proof. Applying H to the triangle (8.2) we have an exact sequence $\mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}\left(G_{A}[n]\right)\right)$ $\longrightarrow \mathrm{H}\left(P_{A}\right) \longrightarrow 0$. However $\mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}\left(G_{A}[n]\right)\right)$ is a monomorphism since by construction is the composition of the maps $\mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+1]\right)\right) \longrightarrow \mathrm{H}\left(G_{A}\right)$ and $\mathrm{H}\left(G_{A}\right) \longrightarrow$ $\mathrm{H}\left(\Omega_{x}^{n}\left(G_{A}[n]\right)\right.$ which are monomorphisms. Hence we have short exact sequence $0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{1}\left(\Omega_{x}^{n}(A[-1])[n+\right.\right.$ $1])) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}\left(G_{A}[n]\right)\right) \longrightarrow \mathrm{H}\left(P_{A}\right) \longrightarrow 0$ and therefore $\mathrm{pd} \mathrm{H}\left(P^{A}\right) \leqslant 1$ since the objects $\Omega_{x}^{n}\left(G_{A}[n]\right)$ and $\Omega_{X}^{1}\left(\Omega_{X}^{n}(A[-1])[n+1]\right)$ lie in X. On the other hand applying the functor H to the triangle (8.3) and using that $\mathrm{H}\left(\operatorname{Cell}_{n-1}\left(G_{A}[n]\right)[-n]\right)=0$, since Cell $_{n-1}\left(G_{A}[n]\right)[-n] \in X[-n] \star \cdots \star X[-1]$, we have an exact sequence $0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(P^{A}\right) \longrightarrow \mathrm{H}\left(G^{A}\right) \longrightarrow 0$ and $\mathrm{H}\left(G^{A}\right)$ is a subobject of $\mathrm{H}\left(\right.$ Cell $\left._{n-1}\left(G_{A}[n]\right)[-n+1]\right)$. Since Cell $n-1\left(G_{A}[n]\right)[-n+1]$ lies in $X[-n+1] \star \cdots \star X[-1] \star X$ and H kills the objects of $X[-n+1] \star \cdots \star X[-1]$, it follows that $\mathrm{H}\left(G^{A}\right)$ is a subobject of a projective object and therefore it is Gorenstein-projective. Clearly then the map $\mathrm{H}(A) \longrightarrow \mathrm{H}\left(P^{A}\right)$ is a left $\operatorname{Proj}{ }^{\leqslant 1} \bmod -\mathcal{X}$-approximation of $\mathrm{H}(A)$, since $\operatorname{Ext}^{1}(M, N)=0$, for any Gorenstein-projective object M and any object N with finite projective dimension.
8.2. Representation Dimension. Recall that an additive category is called Krull-Schmidt if any of its objects is a finite coproduct of indecomposable objects and any indecomposable object has local endomorphism ring. A Krull-Schmidt category has finite representation type if there are finitely many indcomposable objects up to isomorphism. Now let \mathscr{A} be an abelian category with enough projectives. We say that \mathscr{A} is of finite Cohen-Macaulay type, finite CM-type for short, if GProj \mathscr{A} is a Krull-Schmidt category of finite represenattion type. In this section we show that if \mathcal{X} is a strong $(n+1)$-cluster tilting subcategory of \mathcal{T} and
the cluster tilted category mod $-\mathcal{X}$ is of finite CM-type, then $\bmod -\mathcal{X}$ is equivalent to the category of finitely presented modules over a coherent ring of representation dimension $\leqslant 3$ in the sense of Auslander [3].

Lemma 8.8. Let \mathscr{A} be a 1-Gorenstein abelian category. If $\operatorname{Proj} \mathscr{A}$ is covariantly finite and $\operatorname{Inj} \mathscr{A}$ is contravariantly finite in \mathscr{A}, then the full subcategory

$$
\mathscr{E}:=\operatorname{GProj} \mathscr{A} \oplus \operatorname{Glnj} \mathscr{A}=\operatorname{add}\{X \oplus Y \in \mathscr{A} \mid X \in \operatorname{GProj} \mathscr{A}, Y \in \operatorname{Glnj} \mathscr{A}\}
$$

is functorially finite in \mathscr{A} and: gl. dim mod- $\mathscr{E} \leqslant 3$.
Proof. Since \mathscr{A} has enough projectives and enough injectives, the full subcategories Proj \mathscr{A} and $\operatorname{Inj} \mathscr{A}$ are functorially finite in \mathscr{A}. Then by [7, Theorem 4.16] the full subcategories GProj \mathscr{A} and $\operatorname{GInj} \mathscr{A}$ are functorially finite in \mathscr{A}. We use throughout that, by Remark 8.2 , GProj $\mathscr{A}=\Omega \mathscr{A}$ and $\operatorname{GInj} \mathscr{A}=\Sigma \mathscr{A}$.

Let F be in \mathscr{A} and consider the following exact sequences in mod- X :

$$
0 \longrightarrow F \longrightarrow I \longrightarrow \Sigma(F) \longrightarrow 0 \quad \text { and } \quad 0 \longrightarrow \Omega I \longrightarrow P \longrightarrow I \longrightarrow 0
$$

where $F \longrightarrow I$ is a monomorphism into an injective object I and $P \longrightarrow I$ is an epimorphism from a projective object P. The above exact sequences induce the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \Omega I \longrightarrow \Omega \Sigma F \longrightarrow F \longrightarrow 0 \tag{8.5}
\end{equation*}
$$

Since \mathscr{A} is 1 -Gorenstein, it follows that $\Omega(I)$ is projective. Hence applying $\mathscr{A}(G,-)$, where G is Gorensteinprojective, to (8.5), we have $\operatorname{Ext}_{\mathscr{A}}^{1}(G, \Omega I)=0$ and therefore the map $\Omega \Sigma(F) \longrightarrow F \longrightarrow 0$ is a right (GProj $\left.\mathscr{A}\right)$ approximation of F. Since $\operatorname{Inj} \mathscr{A}$ is contravariantly finite in \mathscr{A}, there is an exact sequence $0 \longrightarrow \Omega_{\mathbf{I}}(F) \longrightarrow$ $J \longrightarrow F$, where the map $J \longrightarrow F$ is a right $(\operatorname{Inj} \mathscr{A})$-approximation of F. Then $\Sigma \Omega_{\mathbf{I}}(F)=\operatorname{Im}(J \longrightarrow F)$ lies in $\operatorname{GInj} \mathscr{A}=\Sigma(\mathscr{A})$ and we claim that the map $0 \longrightarrow \Sigma \Omega_{\mathbf{I}}(F) \longrightarrow F$ is a right $G \operatorname{lnj} \mathscr{A}$-approximation of F. Indeed let Z be a Gorenstein-injective object and $Z \longrightarrow F$ be a map in \mathscr{A}; then by definition there exists an exact sequence $0 \longrightarrow Z^{\prime} \longrightarrow J^{\prime} \longrightarrow Z \longrightarrow 0$, where J^{\prime} is injective and Z^{\prime} is Gorenstein-injective. Then the composition $J^{\prime} \longrightarrow Z \longrightarrow F$ factors through J and we have an exact commutative diagram

It follows that there exists a unique map $Z \longrightarrow \Sigma \Omega_{\mathbf{I}}(F)=\operatorname{Im}(J \rightarrow F)$ and then by diagram chasing it is easy to see that $Z \longrightarrow F$ factors through $Z \longrightarrow \Sigma \Omega_{\mathbf{I}}(F)$, i.e. $0 \longrightarrow \Sigma \Omega_{\mathbf{I}}(F) \longrightarrow F$ is a right $\operatorname{Glnj} \mathscr{A}$-approximation of F. Taking the pull-back of 8.5 along the map $\Sigma \Omega_{\mathbf{I}}(F) \longrightarrow F$ we have an exact commutative diagram

where the middle map $G \longrightarrow \Omega \Sigma F$ is a monomorphism and therefore G is Gorenstein-projective. The above pull-back diagram induces an exact sequence

$$
\begin{equation*}
0 \longrightarrow G \longrightarrow \Omega \Sigma F \oplus \Sigma \Omega_{\mathbf{I}}(F) \longrightarrow F \longrightarrow 0 \tag{8.7}
\end{equation*}
$$

where clearly the objects G and $\Omega \Sigma F \oplus \Sigma \Omega_{\mathbf{I}}(F)$ lie in \mathscr{E}. Using the pull-back diagram (8.6) it is easy to see that the map $\Omega \Sigma F \oplus \Sigma \Omega_{\mathbf{I}}(F) \longrightarrow F$ is a right \mathscr{E}-approximation of F. Hence \mathscr{E} is contravariantly finite in \mathscr{A}. A dual construction gives that \mathscr{E} is covariantly finite in \mathscr{A}. In particular mod- \mathscr{E} is abelian with enough projectives and the restricted Yoneda embedding $\mathrm{Y}: \mathscr{A} \longrightarrow \bmod -\mathscr{E}, \quad \mathrm{Y}(F)=\left.\operatorname{Hom}(-, F)\right|_{\mathscr{E}}$ induces an equivalence between \mathscr{E} and Proj mod- \mathscr{E}. Applying Y to (8.6) we have then a projective resolution

$$
\begin{equation*}
0 \longrightarrow \mathrm{Y}(G) \longrightarrow \mathrm{Y}\left(\Omega \Sigma F \oplus \Sigma \Omega_{\mathbf{I}}(F)\right) \longrightarrow \mathrm{Y}(F) \longrightarrow 0 \tag{8.8}
\end{equation*}
$$

in mod- \mathscr{E} and therefore $\mathrm{pd} Y(F) \leqslant 1$. Finally let M be an arbitrary object of mod- \mathscr{E} and choose a projective presentation $\mathrm{Y}\left(W_{1}\right) \longrightarrow \mathrm{Y}\left(W_{0}\right) \longrightarrow M \longrightarrow 0$ in $\bmod -\mathscr{E}$, where the W_{i} lie in \mathscr{E}. If $F=\operatorname{Ker}\left(W_{1} \rightarrow W_{0}\right)$, then using (8.8) we have a projective resolution

$$
0 \longrightarrow \mathrm{Y}\left(W_{3}\right) \longrightarrow \mathrm{Y}\left(W_{2}\right) \longrightarrow \mathrm{Y}\left(W_{1}\right) \longrightarrow \mathrm{Y}\left(W_{0}\right) \longrightarrow M \longrightarrow 0
$$

where $W_{3}=\mathrm{Y}(G)$ for some Gorenstein-projective object G and $W_{2}=\mathrm{Y}\left(\Omega \Sigma(F) \oplus \Sigma \Omega_{\mathbf{I}}(F)\right)$. Hence pd $M \leqslant 3$ and therefore gl. dim mod- $\mathscr{E} \leqslant 3$.

Recall that if \mathscr{A} is an abelian category, then the representation dimension rep. $\operatorname{dim} \mathscr{A}$ of \mathscr{A} in the sense Auslander [3] is defined as follows. An object T of \mathscr{A} is called generator, resp. cogenerator, if any object of \mathscr{A} is a factor, resp. subobject, of a direct summand of a finite direct sum of copies of T. We call an object T of \mathscr{A} right coherent if the full subcategory add T has weak kernels; dually T is called left coherent if add T has weak cokernels. For instance T is right, resp. left, coherent, if add T is contravariantly, resp. covariantly, finite. Finally T is called coherent if T is left and right coherent object. Then

$$
\text { rep. } \operatorname{dim} \mathscr{A}=\inf \left\{\operatorname{gl} \cdot \operatorname{dim} \bmod -\operatorname{End}_{\mathscr{A}}(T) \mid T \text { is a coherent generator-cogenerator of } \mathscr{A}\right\}
$$

Theorem 8.9. Let \mathcal{T} be a Krull-Schmidt triangulated category and X a strong $(n+1)$-cluster tilting subcategory of \mathcal{T}. If mod- \mathcal{X} is of finite Cohen-Macauly type, then rep. dim mod- $\mathcal{X} \leqslant 3$. More precisely there is a strong $(n+1)$-cluster tilting coherent object $T \in X$ such that $\bmod -\mathcal{X} \approx \bmod ^{-E n d} \mathcal{T}(T)$, the $\operatorname{ring} \operatorname{End}_{\mathcal{T}}(T)$ is coherent and the representation dimension of $\bmod -\operatorname{End}_{\mathcal{T}}(T)$ is at most 3 .

Proof. Since mod- \mathcal{X} is of finite Cohen-Macaulay type, clearly $X=\operatorname{add} T$ for some $(n+1)$-cluster tilting object $T \in \mathcal{T}$ and then $\bmod -\mathcal{X} \approx \bmod ^{-E n d}(T)$. For the same reason GProj $\bmod -\mathcal{X}=\operatorname{add} Z$ and GInj mod- $\mathcal{X}=\operatorname{add} W$, where $Z, W \in \bmod -\mathcal{X}$. Then the object $G:=Z \oplus W$ is a coherent object which is a generator-cogenerator of $\bmod -X$, and then Lemma 8.8 shows that gl. dim mod-End $\bmod -x(H) \leqslant 3$. It follows that rep. dim mod $-X \leqslant 3$.

Recall that a finite-dimensional k-algebra Λ over a field k is called of finite $C M$-type if the full subcategory Gproj Λ of finitely generated Gorenstein-projective Λ-modules is of finite representation type.

Corollary 8.10. Let \mathcal{T} be a triangulated category and T a strong $(n+1)$-cluster tilting object of \mathcal{T}. Assume that the cluster-tilted algebra $\operatorname{End}_{\mathcal{T}}(T)$ is of finite Cohen-Macaulay type. Then the algebra $\operatorname{End}_{\mathcal{T}}(T)$ has representation dimension at most 3 .

9. Certain Cluster Tilted Subcategories are Stably Calabi-Yau

We have seen that the category mod- \mathcal{X} of coherent functors over a $(n-k)$-strong $(n+1)$-cluster tilting subcategory X of a triangulated category \mathcal{T} is k-Gorenstein, provided that $0 \leqslant k \leqslant 1$ or $k \leqslant \frac{n+1}{2}$, if $2 \leqslant k \leqslant n-1$. In this section we show that if the triangulated category \mathcal{T} is $(n+1)$-Calabi-Yau, then the triangulated stable category modulo projectives of the Gorenstein-projective objects of mod- \mathcal{X} is $(n+2)$ -Calabi-Yau in case $0 \leqslant k \leqslant 1$, and under an additional assumption if $2 \leqslant k \leqslant \frac{n+1}{2}$. This generalizes a basic result of Keller-Reiten [21] who treated the case $n=1$.

Throughout let \mathcal{T} be a triangulated category and X a fixed $(n+1)$-cluster tilting subcategory of $\mathcal{T}, n \geqslant 1$.
9.1. Serre Functors. Assume that the triangulated category \mathcal{T} is k-linear with split idempotents over a field k, all Hom-spaces are finite-dimensional, and admits a Serre functor \mathbb{S}. So $\mathbb{S}: \mathcal{T} \longrightarrow \mathcal{T}$ is a triangulated equivalence and there are natural isomorphisms

$$
\begin{equation*}
\mathrm{DT}(A, B) \xrightarrow{\cong} \mathcal{T}(B, \mathbb{S}(A)) \tag{*}
\end{equation*}
$$

where D denotes duality with respect to the base field k.
For any object $A \in \mathcal{T}$ we consider triangles

$$
\begin{equation*}
X_{A}^{1} \longrightarrow X_{A}^{0} \longrightarrow \operatorname{Cell}_{1}(A) \longrightarrow X_{A}^{1}[1] \quad \text { and } \quad X_{1}^{A}[-1] \longrightarrow \operatorname{Cell}^{1}(A) \longrightarrow X_{0}^{A} \longrightarrow X_{1}^{A} \tag{9.1}
\end{equation*}
$$

where the maps $X_{A}^{1} \longrightarrow \Omega_{X}^{1}(A)$ and $X_{A}^{0} \longrightarrow A$ are right X-approximations and the maps $A \longrightarrow X_{0}^{A}$ and $\Sigma_{X}^{1}(A) \longrightarrow X_{1}^{A}$ are left \mathcal{X}-approximations. Then
$\operatorname{Cell}_{1}(A) \in X \star X[1]$ and $\mathrm{H}\left(\operatorname{Cell}_{1}(A)\right) \cong \mathrm{H}(A), \quad \operatorname{Cell}^{1}(A) \in X[-1] \star X \quad$ and $\quad \mathrm{H}^{\text {op }}(A) \cong \mathrm{H}\left(\operatorname{Cell}^{1}(A)\right)$
Recall that the transpose $\operatorname{Tr}(F)$, in the sense of Auslander-Bridger [4], of an object F in mod- \mathcal{X} is defined as follows. Let $\mathrm{H}\left(X^{1}\right) \longrightarrow \mathrm{H}\left(X^{0}\right) \longrightarrow F \longrightarrow 0$ be a projective presentation of F. Consider the duality functor $\mathrm{d}^{r}:=\operatorname{Hom}(-, \mathrm{H}(?) \mid x): \bmod -\mathcal{X} \longrightarrow \bmod -\mathcal{X}^{\circ \rho}$, defined by $\mathrm{d}^{r}(F)=\operatorname{Hom}(F, \mathrm{H}(?) \mid x): X \longrightarrow \mathscr{A} b$, where $\operatorname{Hom}(F, \mathrm{H}(?) \mid X)(X)=\operatorname{Hom}(F, \mathrm{H}(X))$. Similarly the duality functor $\mathrm{d}^{l}: \bmod -X^{\circ p} \longrightarrow \bmod -\mathcal{X}$ is defined and it is well-known that $\left(\mathrm{d}^{r}, \mathrm{~d}^{l}\right): \bmod -\mathcal{X} \leftrightarrows \bmod -\mathcal{X}^{\circ p}$ is an adjoint on the right pair of contravariant functors inducing a duality between Proj mod- \mathcal{X} and Proj mod- $X^{\circ p}$, a duality between GProj mod- \mathcal{X} and GProj mod- $X^{\circ p}$, and finally a duality between GProj mod- X and GProj mod- $X^{\circ p}$. Now the transpose $\operatorname{Tr}(F)$ of F is defined by $\operatorname{Tr}(F)=\operatorname{Coker}\left(\mathrm{d}^{r} \mathrm{H}\left(X^{0}\right) \longrightarrow \overline{\left.\mathrm{d}^{r} \mathrm{H}\left(X^{1}\right)\right) \text {. Since } \mathrm{d}^{r} \mathrm{H} \cong} \mathrm{H}^{\text {op }}\right.$, we have an exact sequence

$$
0 \longrightarrow \mathrm{~d}^{r}(F) \longrightarrow \mathrm{H}^{\mathrm{op}}\left(X^{0}\right) \longrightarrow \mathrm{H}^{\mathrm{op}}\left(X^{1}\right) \longrightarrow \operatorname{Tr}(F) \longrightarrow 0
$$

In this way one obtains a functor $\operatorname{Tr}: \bmod -\mathcal{X} \longrightarrow \bmod -X^{\circ p}$ which is well-known to be a duality. Now the duality D with respect to the base field k acts on mod- \mathcal{X} by $\mathrm{D}(F)(X)=\mathrm{D}(F(X))$.

Lemma 9.1. There are isomorphisms:

$$
\begin{array}{rlrl}
\operatorname{DTr} & (A) & \cong \mathrm{H}\left(\mathbb{S C e l l}_{1}(A)[-1]\right), & \\
\operatorname{TrDH}(A) \cong \mathrm{H}\left(\mathbb{S}^{-1} \operatorname{Cell}^{1}(A)[1]\right) \tag{9.3}\\
\operatorname{DTrH}^{\mathrm{op}}(A) & \cong \mathrm{H}\left(\mathbb{S}^{-1} \operatorname{Cell}_{1}(A)[1]\right), & & \operatorname{TrDH}
\end{array}
$$

Proof. For simplicity we set $A^{*}=\operatorname{Cell}_{1}(A)$ and $A_{*}=$ Cell $^{1}(A)$. Applying H and $\mathrm{H}^{\circ \mathrm{p}}$ to the triangles in (9.1) we have exact sequences $\mathrm{H}\left(X_{A}^{1}\right) \longrightarrow \mathrm{H}\left(X_{A}^{0}\right) \longrightarrow \mathrm{H}\left(A^{*}\right) \longrightarrow 0$ and $\mathrm{H}^{\mathrm{op}}\left(X_{1}^{A}\right) \longrightarrow \mathrm{H}^{\mathrm{op}}\left(X_{0}^{A}\right) \longrightarrow$ $\mathrm{H}^{\mathrm{op}}\left(A_{*}\right) \longrightarrow 0$. Applying the dual functors $\operatorname{Hom}\left(-, \mathrm{H}^{\mathrm{op}}(?) \mid x\right): \bmod -\mathcal{X}^{\mathrm{op}} \longrightarrow \bmod -X$ and $\operatorname{Hom}(-, \mathrm{H}(?) \mid X):$ mod- $X \longrightarrow \bmod -X^{\text {op }}$ we then have exact sequences $\mathrm{H}\left(X_{0}^{A}\right) \longrightarrow \mathrm{H}\left(X_{1}^{A}\right) \longrightarrow \operatorname{TrH}^{\text {op }}\left(A^{*}\right) \longrightarrow 0$ and $\mathrm{H}^{\text {op }}\left(X_{A}^{0}\right) \longrightarrow$ $\mathrm{H}^{\mathrm{OP}}\left(X_{A}^{1}\right) \longrightarrow \operatorname{TrH}\left(A_{*}\right) \longrightarrow 0$. Finally applying the duality functor D and using (*) we have exact sequences

$$
0 \longrightarrow \mathrm{D} \operatorname{TrH}\left(A^{*}\right) \longrightarrow \mathrm{H}\left(\mathbb{S} X_{A}^{1}\right) \longrightarrow \mathrm{H}\left(\mathbb{S} X_{A}^{0}\right) \quad \text { and } \quad 0 \longrightarrow \mathrm{D} \operatorname{TrH}^{\mathrm{op}}\left(A_{*}\right) \longrightarrow \mathrm{H}^{\mathrm{op}}\left(\mathbb{S}^{-1} X_{1}^{A}\right) \longrightarrow \mathrm{H}^{\mathrm{op}}\left(\mathbb{S}^{-1} X_{0}^{A}\right)
$$

However since \mathbb{S} and \mathbb{S}^{-1} are triangulated, we have triangles

$$
\mathbb{S}\left(X_{A}^{0}[-1]\right) \longrightarrow \mathbb{S}\left(A^{*}[-1]\right) \longrightarrow \mathbb{S} X_{A}^{1} \longrightarrow \mathbb{S} X_{A}^{0}, \quad \mathbb{S}^{-1} X_{0}^{A} \longrightarrow \mathbb{S}^{-1} X_{1}^{A} \longrightarrow \mathbb{S}^{-1}\left(A_{*}[1]\right) \longrightarrow \mathbb{S}^{-1}\left(X_{0}^{A}[1]\right)
$$

Since $\mathrm{H}\left(\mathbb{S}\left(X_{A}^{0}[-1]\right)\right)=\mathcal{T}\left(\left(X, \mathbb{S}\left(X_{A}^{0}[-1]\right)\right)=\mathrm{DT}\left(X_{A}^{0}[-1], X\right)=\mathrm{DT}\left(X_{A}^{0}, X[1]\right)=0\right.$ and $H^{\circ \mathrm{op}}\left(\mathbb{S}^{-1}\left(X_{0}^{A}[1]\right)\right)=$ $\mathcal{T}\left(\mathbb{S}^{-1}\left(X_{0}^{A}[1]\right), \mathcal{X}\right)=\mathcal{T}\left(X_{0}^{A}[1], \mathbb{S X}\right)=\mathrm{DT}\left(X, X_{0}^{A}[1]\right)=0$, we infer that

$$
\operatorname{DTrH}\left(A^{*}\right) \xrightarrow{\cong} \mathrm{HS}\left(A^{*}[-1]\right) \quad \text { and } \quad \operatorname{DTr}^{\mathrm{op}}\left(A_{*}\right) \xrightarrow{\cong} \mathrm{H}^{\mathrm{op}} \mathbb{S}^{-1}\left(A_{*}[1]\right)
$$

Since $\mathrm{H}(A) \cong \mathrm{H}\left(A^{*}\right)$ and $\mathrm{H}^{\mathrm{op}}(A) \cong \mathrm{H}^{\mathrm{op}}\left(A_{*}\right)$, these reduce the isomorphisms:

$$
\mathrm{D} \operatorname{Tr} \mathrm{H}(A) \stackrel{\cong}{\cong} \mathrm{HS}\left(A^{*}[-1]\right) \quad \text { and } \quad \mathrm{DTr}^{\mathrm{op}}(A) \xrightarrow{\cong} \mathrm{H}^{\mathrm{op}} \mathbb{S}^{-1}\left(A_{*}[1]\right)
$$

Similarly we get isomorphisms: $\operatorname{Drr}^{\circ \mathrm{p}}(A) \cong \mathrm{H}\left(\mathbb{S}^{-1} A^{*}[1]\right)$ and $\operatorname{TrDH}^{\circ \mathrm{p}}(A) \cong \mathrm{H}\left(\mathbb{S} A_{*}[-1]\right)$.
To proceed further we need the following.
Lemma 9.2. The cluster tilted category mod-X has Auslander-Reiten sequences. In particular AuslanderReiten formula

$$
\begin{equation*}
\mathrm{DHom}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \mathrm{Ext}^{1}(\mathrm{H}(B), \mathrm{D} \operatorname{Tr}(\mathrm{H}(A)) \tag{9.4}
\end{equation*}
$$

holds for any objects $\mathrm{H}(A)$ and $\mathrm{H}(B)$ in mod- \mathcal{X}. Moreover there are isomorphisms:

$$
\overline{\operatorname{Hom}}\left(\mathrm{H}(B), \mathrm{H}\left(\mathbb{S C e l l}_{1}(A)[-1]\right)\right) \cong \mathrm{DExt}^{1}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\mathrm{H}\left(\mathbb{S}^{-1} \operatorname{Cell}^{1}(B)[1]\right), \mathrm{H}(A)\right)
$$

Proof. Since X is an $(n+1)$-cluster tilting subcategory, it follows that X is functorially finite. On the other hand by using (*), we have isomorphisms, $\forall X \in X$:

$$
\begin{aligned}
& \mathrm{DH}(X) \xrightarrow{\cong} \mathrm{DT}(X, X) \xrightarrow{\cong} \mathcal{T}(X, \mathbb{S X}) \xrightarrow{\cong} \mathcal{T}\left(\mathbb{S}^{-1} X, X\right) \xrightarrow{\cong} \mathrm{H}^{\mathrm{op}}\left(\mathbb{S}^{-1} X\right), \\
& \mathrm{DH}^{\mathrm{op}}(X) \xrightarrow{\cong} \mathrm{DT}(X, X) \xrightarrow{\cong} \mathcal{T}(X, \mathbb{S} X) \xrightarrow{\cong} \mathrm{H}(\mathbb{S} X)
\end{aligned}
$$

which show that k-duals of contravariant or covariant representable functors over X are coherent. This clearly implies, by [5], that mod- \mathcal{X} is a dualizing k-variety. In particular has Auslander-Reiten sequences and Auslander-Reiten formula (9.4) holds. The remaining isomorphisms follow by using Lemma 9.1.

Finally we shall need the following observation.
Lemma 9.3. The Serre functor $\mathbb{S}: \mathcal{T} \longrightarrow \mathcal{T}$ induces an equivalence

$$
\mathbb{S}: X \underset{ }{\approx} X[n+1]
$$

Proof. Consider the triangle

$$
\Omega_{X}^{n}\left(\mathbb{S}(X[-1])[n-1] \longrightarrow \operatorname{Cell}_{n-1}(\mathbb{S}(X[-1])) \longrightarrow \mathbb{S}(X[-1]) \longrightarrow \Omega_{X}^{n}(\mathbb{S}(X[-1])[n]\right.
$$

Since the functor \mathbb{S} is triangulated, we have a triangle

$$
\Omega_{X}^{n}\left(\mathbb{S}(X[-1])[n] \longrightarrow \text { Cell }_{n-1}(\mathbb{S}(X[-1]))[1] \longrightarrow \mathbb{S}(X) \longrightarrow \Omega_{x}^{n}(\mathbb{S}(X[-1])[n+1]\right.
$$

By Serre duality the middle map corresponds to an element of $\mathrm{DT}\left(X, \mathrm{Cell}_{n-1}(\mathbb{S}(X[-1]))[1]\right)$. The last space is zero since $\operatorname{Cell}_{n-1}(\mathbb{S}(X[-1]))[1] \in X[1] \star X[2] \star \cdots \star X[n]$, see Proposition 4.2. Hence the middle map of the triangle above is zero and therefore $\mathbb{S}(X)$ lies in $X[n+1]$ as a direct summand of $\Omega_{X}^{n}(\mathbb{S}(X[-1])[n+1]$. Therefore $\mathbb{S}(\mathcal{X}) \subseteq \mathcal{X}[n+1]$. Dually if $X[n+1] \in \mathcal{X}[n+1]$, then for any i with $1 \leqslant i \leqslant n$, we have: $\mathcal{T}\left(\mathbb{S}^{-1}(X[n+1]), X[i]\right)=\mathcal{T}(X[n+1], \mathbb{S}(X[i])) \cong \mathrm{DT}(X[i], X[n+1])=0$. Hence $\mathbb{S}^{-1}(X[n+1]) \in{ }_{n}^{\top} X=X$ and therefore $\mathbb{S}^{-1}(X[n+1]) \subseteq \mathcal{X}$ and the assertion follows.
9.2. $(n+1)$-Calabi-Yau Categories. From now on we assume that: \mathcal{T} is $(n+1)$-Calabi-Yau, i.e. there is an isomorphism of triangulated functors:

$$
\mathbb{S}(?) \stackrel{\cong}{\cong}(?)[n+1]
$$

Then we have natural isomorphisms

$$
\begin{equation*}
\operatorname{DHom}_{\mathcal{T}}(A, B) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{T}}(B, A[n+1]) \tag{9.5}
\end{equation*}
$$

Lemma 9.4. Let A be an object in $X \star X_{[1]}$. Then we have the following
(i) $\mathrm{D} \operatorname{TrH}(A) \cong \mathrm{H}(A[n])$.
(ii) If $n \geqslant 2$, then: $\mathrm{H}(A[t])=0, \quad 1 \leqslant t \leqslant n-1$.
(iii) For any $\mathrm{H}(B) \in \mathrm{GProj} \bmod -X$, there is a natural isomorphism:

$$
\operatorname{DHom}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\Omega^{1} \mathrm{H}(B), \mathrm{H}(A[n])\right)
$$

Proof. (i) Since $A \in X \star X[1]$, we may take $A=\operatorname{Cell}_{1}(A)$ and then by Lemma 9.1, we have an isomorphism $\mathrm{D} \operatorname{Tr}(\mathrm{H}(A)) \cong \mathrm{H}(A[n])$.
(ii) Since $n \geqslant 2$, and $A \in X \star X[1]$, we have $A[t] \in X[t] \star X[t+1]$ which is contained in $X^{\top}=X[1] \star \cdots \star X[n]$, for $1 \leqslant t \leqslant n-1$. It follows that $\mathrm{H}(A[t])=0,1 \leqslant t \leqslant n-1$.
(iii) By Lemma 9.2 we have an isomorphism $\operatorname{DHom}(\mathrm{H}(A), \mathrm{H}(B)) \cong \operatorname{Ext}^{1}(\mathrm{H}(B), \mathrm{D} \operatorname{Tr}(\mathrm{H}(A))$. Hence (i) gives us an isomorphism $\operatorname{DHom}(\mathrm{H}(A), \mathrm{H}(B)) \cong \operatorname{Ext}^{1}(\mathrm{H}(B), \mathrm{H}(A[n]))$. Since $\mathrm{H}(B)$ is Gorenstein-projective, by Remark 8.2 we have an isomorphism $\operatorname{Ext}^{1}(\mathrm{H}(B), \mathrm{H}(A[n])) \cong \underline{\operatorname{Hom}}\left(\Omega^{1} \mathrm{H}(B), \mathrm{H}(A[n])\right)$.

To proceed we need the following two preliminary results.
Lemma 9.5. Let $n \geqslant 2$, and A be an object in $\mathcal{X} \star X[1]$ such that $\mathrm{H}(A)$ is Gorenstein-projective. Let

$$
C \longrightarrow A \longrightarrow B \longrightarrow C[1]
$$

be a triangle in \mathcal{T}. If C lies in $\mathcal{X}[-n] \star \mathcal{X}[-n+1] \star \cdots \star \mathcal{X}[-1]$, then there exists a short exact sequence

$$
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(B) \longrightarrow \mathrm{H}(C[1]) \longrightarrow 0
$$

which remains exact after the application of the functor $\operatorname{Hom}(-, \mathrm{H}(X)), \forall X \in X$. Moreover if $\mathrm{H}(C[1])$ is Gorenstein-projective, then so is $\mathrm{H}(B)$. The converse holds if mod- X is Gorenstein.
Proof. Since $\mathrm{H}(A)$ is Gorenstein-projective, there is a monomorphism $\mathrm{H}(A) \longrightarrow \mathrm{H}(X)$, where $X \in X$. Consider the composition $\mathrm{H}(C) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(X)$. Since A lies in $X \star X[1]$, the monomorphism $\mathrm{H}(A) \longrightarrow \mathrm{H}(X)$ is induced by a map $A \longrightarrow X$. The composition $C \longrightarrow A \longrightarrow X$ is clearly zero, since C lies in $X[-n]$ * $X[-n+1] \star \cdots \star X[-1]$. Therefore the map $A \longrightarrow X$ factorizes through $\mathrm{H}(B)$. As a consequence the composition $\mathrm{H}(C) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(X)$ is zero. Since $\mathrm{H}(A) \longrightarrow \mathrm{H}(X)$ is a monomorphism and $\mathrm{H}(A[1])=0$, since $A \in X \star X[1]$, we infer that the map $\mathrm{H}(C) \longrightarrow \mathrm{H}(A)$ is zero and therefore we have an exact sequence:

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}(B) \longrightarrow \mathrm{H}(C[1]) \longrightarrow 0 \tag{9.6}
\end{equation*}
$$

and in addition, as the above argument shows, any map $\mathrm{H}(A) \longrightarrow \mathrm{H}(X), X \in X$, factorizes through $\mathrm{H}(B)$. It follows that the exact sequence (9.6) remains exact after the application of the functor $\mathrm{H}(X), \forall X \in X$. If $\mathrm{H}(C[1])$ is Gorenstein-projective, then so is $\mathrm{H}(B)$, since GProj mod- \mathcal{X} is well-known to be closed under extensions. Conversely let mod- \mathcal{X} be Gorenstein, say k-Gorenstein, and let $\mathrm{H}(B)$ be Gorenstein-projective. It is well-known, see [7], that GProj mod- X consists of all objects F such that $\mathrm{Ext}^{k}(F, \mathrm{H}(X))=0, \forall X \in X, \forall k \geqslant 1$. Applying $\operatorname{Hom}(-, \mathrm{H}(X)), \forall X \in X$, to the exact sequence (9.6) we have trivially that $\mathrm{Ext}^{k}(\mathrm{H}(C[1]), \mathrm{H}(X))=0$, $\forall X \in \mathcal{X}, \forall k \geqslant 1$, so $\mathrm{H}(C[1])$ is Gorenstein-projective.
Lemma 9.6. Let \mathcal{T} be an $(n+1)$-Calabi-Yau triangulated category over a field $k, n \geqslant 1$, and let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T} such that the cluster tilted category mod- \mathcal{X} is k-Gorenstein, $k \geqslant 0$. Assume that for any $A \in X \star X[1]$ such that $\mathrm{H}(A)$ is Gorenstein-projective, there is a natural isomorphism:

$$
\Omega^{-(n+1)} \mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{-k} \Omega^{k} \mathrm{H}(A[n])
$$

in GProj mod- X. Then GProj mod- X is $(n+2)$-Calabi-Yau.
Proof. Since mod-X is k-Gorenstein, it follows from Remark 8.2 that $\Omega^{k} \mathrm{H}(C) \in \operatorname{GProj} \bmod -\mathcal{X}, \forall C \in \mathcal{T}$, and moreover the functor $\Omega^{-k} \Omega^{k}: \underline{\bmod }-\mathcal{X} \longrightarrow$ GProj mod- X is a right adjoint of the inclusion mod $-\mathcal{X} \longrightarrow$ GProj mod- X. Then by Lemma 9.4, we have natural isomorphisms

$$
\operatorname{D\underline {Hom}}(\mathrm{H}(A), \mathrm{H}(B)) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\Omega^{1} \mathrm{H}(B), \mathrm{H}(A[n])\right) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\Omega^{1} \mathrm{H}(B), \Omega^{-k} \Omega^{k} \mathrm{H}(A[n])\right) \xrightarrow{\cong}
$$

$$
\xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\Omega^{1} \mathrm{H}(B), \Omega^{-(n+1)} \mathrm{H}(A)\right) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(\mathrm{H}(B), \Omega^{-(n+2)} \mathrm{H}(A)\right)
$$

for any Gorenstein-projective objects $\mathrm{H}(B)$ and $\mathrm{H}(A)$, with $A \in X \star X[1]$. Since any object $F=\mathrm{H}(C)$ of mod- X is isomorphic to an object of the form $\mathrm{H}(A)$, where $A \in X \star X[1]$, namely $A=\operatorname{Cell}_{1}(C)$, the above natural isomorphism holds for all Gorenstein-projective objects. Hence the functor $\Omega^{-(n+2)}: G P r o j m o d-X \longrightarrow$ GProj mod- \mathcal{X} serves as a Serre functor in GProj mod- X, i.e. GProj mod- \mathcal{X} is $(n+2)$-Calabi-Yau.

Now we are ready to state and prove the first main result of this section. Note that the case $n=1$ is due to Keller-Reiten [21].
Theorem 9.7. Let \mathcal{T} be a k-linear triangulated category over a field k with finite-dimensional Hom-spaces. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of \mathcal{T} and assume that \mathcal{X} is $(n-k)$-strong, $0 \leqslant k \leqslant 1, n \geqslant 1$. If \mathcal{T} is $(n+1)$-Calabi-Yau, then the stable triangulated category Gproj mod- \mathcal{X} is $(n+2)$-Calabi-Yau.

We split the proof in two steps $k=0$ and $k=1$. In each step we need to treat separately the cases $n=1$ and $n \geqslant 2$. Note that under the imposed assumptions, the category mod- X is 1 -Gorenstein. More precisely for $k=0, \bmod -X$ is Frobenius, so $\bmod -X=G P r o j \bmod -X$ and GProj $\bmod -X=\bmod -X$. If $k=1$ then the category mod- \mathcal{X} is 1 -Gorenstein and GProj mod $-\mathcal{X}=\Omega \bmod -\mathcal{X}$ coincides with the full subcategory of mod- \mathcal{X} consisting of the subobjects of the projective objects.

Lemma 9.8. Let \mathcal{X} be an $(n+1)$-cluster tilting subcategory of $\mathcal{T}, n \geqslant 1$. Assume that \mathcal{X} is $(n-1)$-strong, if $n \geqslant 2$. Then $\forall A \in X \star X[1]$, such that $\mathrm{H}(A)$ is Gorenstein-projective, there is an isomorphism in mod- X :

$$
\mathrm{H}(A) \xrightarrow{\cong} \Omega^{n+1} \mathrm{H}(A[n])
$$

Proof. 1. Assume that $n=1$. Then $\mathcal{T}=X \star X[1]$, and X is a 2 -cluster tilting subcategory of the 2 -Calabi-Yau category \mathcal{T}. By Lemma 8.4, there exists a triangle $X_{A[1]}^{1}[-1] \longrightarrow X_{A[1]}^{0}[-1] \longrightarrow A \longrightarrow X_{A[1]}^{1}$, where the last map is a left \mathcal{X}-approximation of $A, X_{A[1]}^{i}$ lie in X, and the map $X_{A[1]}^{0}[-1] \longrightarrow A$ is X-ghost. Hence applying H to the above triangle and using that $\mathcal{T}(X, X[1])=0$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(X_{A[1]}^{1}\right) \longrightarrow \mathrm{H}\left(X_{A[1]}^{0}\right) \longrightarrow \mathrm{H}(A[1]) \longrightarrow 0
$$

Hence in $\underline{\bmod -X}$ we have an isomorphism: $\mathrm{H}(A) \cong \Omega^{2} \mathrm{H}(A[1])$ as required.
2. Assume that $n \geqslant 2$ and X is $(n-1)$-strong. Consider the triangles

$$
\begin{equation*}
\Omega_{X}^{k}(A[n]) \longrightarrow X_{A[n]}^{k-1} \longrightarrow \Omega_{x}^{k-1}(A[n]) \longrightarrow \Omega_{X}^{k}(A[n])[1] \tag{n}
\end{equation*}
$$

Since by Lemma $9.4, \mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n-1$, applying H to the triangle $\left(T_{A[n]}^{1}\right)$, we have exact sequences

$$
\begin{align*}
& 0 \longrightarrow \mathrm{H}\left(\Omega_{X}^{1}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{0}\right) \longrightarrow \mathrm{H}(A[n]) \longrightarrow 0 \tag{9.7}\\
& \mathrm{H}\left(X_{A[n]}^{0}[-n]\right) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{X}^{1}(A[n])[-n+1]\right) \longrightarrow 0 \tag{9.8}
\end{align*}
$$

and isomorphisms:

$$
\begin{equation*}
\mathrm{H}\left(\Omega_{X}^{1}(A[n])[-k]\right)=0, \quad 1 \leqslant k \leqslant n-2 \tag{9.9}
\end{equation*}
$$

By Lemma 9.5, the map $\mathrm{H}\left(X_{A[n]}^{0}[-n]\right) \longrightarrow \mathrm{H}(A)$ is zero and therefore (9.8) induces an isomorphism:

$$
\begin{equation*}
\mathrm{H}(A) \stackrel{ }{\cong} \mathrm{H}\left(\Omega_{x}^{1}(A[n])[-n+1]\right) \tag{9.10}
\end{equation*}
$$

Using (9.9) and applying H to the triangle $\left(T_{A[n]}^{2}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{X}^{2}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{1}\right) \longrightarrow \mathrm{H}\left(\Omega_{X}^{1}(A[n])\right) \longrightarrow 0
$$

and isomorphisms:

$$
\begin{gather*}
\mathrm{H}\left(\Omega_{X}^{2}(A[n])[-k]\right)=0, \quad 1 \leqslant k \leqslant n-3 \\
\mathrm{H}\left(\Omega_{X}^{1}(A[n])[-n+1]\right) \xrightarrow{\cong} \mathrm{H}\left(\Omega_{X}^{2}(A[n])[-n+2]\right) \tag{9.11}
\end{gather*}
$$

Similarly applying H to the triangle $\left(T_{A[n]}^{3}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{3}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{2}\right) \longrightarrow \mathrm{H}\left(\Omega_{X}^{2}(A[n])\right) \longrightarrow 0
$$

and isomorphisms:

$$
\begin{gather*}
\mathrm{H}\left(\Omega_{X}^{2}(A[n])[-k]\right)=0, \quad 1 \leqslant k \leqslant n-4 \\
\mathrm{H}\left(\Omega_{X}^{2}(A[n])[-n+k]\right) \stackrel{ }{\cong} \mathrm{H}\left(\Omega_{X}^{3}(A[n])[-n+k+1]\right), \quad k=1,2 \tag{9.12}
\end{gather*}
$$

Continuing inductively in this way, and applying H to the triangle $\left(T_{A[n]}^{n-1}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{n-2}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])\right) \longrightarrow 0
$$

and isomorphisms:

$$
\begin{gather*}
\mathrm{H}\left(\Omega_{X}^{n-2}(A[n])[-1]\right)=0 \\
\mathrm{H}\left(\Omega_{X}^{n-2}(A[n])[-k]\right) \stackrel{\cong}{\Longrightarrow} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])[-k+1]\right), \quad 2 \leqslant k \leqslant n-1 \tag{9.13}
\end{gather*}
$$

From (9.10) - (9.13), it follows that we have isomorphosms:

$$
\begin{gather*}
\mathrm{H}\left(\Omega_{x}^{n-1}(A[n])[-1]\right) \xrightarrow{\cong} \mathbf{H}\left(\Omega_{x}^{n-2}(A[n])[-2]\right) \xrightarrow{\cong} \mathbf{H}\left(\Omega_{x}^{n-3}(A[n])[-3]\right) \xrightarrow{\cong} \cdots \\
\cdots \xrightarrow{\cdots}\left(\Omega_{x}^{2}(A[n])[-n+2]\right) \xrightarrow{\cong} \mathbf{H}\left(\Omega_{x}^{1}(A[n])[-n+1]\right) \xrightarrow{\cong} \mathrm{H}(A) \tag{9.14}
\end{gather*}
$$

On the other hand the short exact sequences $0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{k}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{k-1}\right) \longrightarrow \mathrm{H}\left(\Omega_{X}^{k-1}(A[n])\right) \longrightarrow 0$, $1 \leqslant k \leqslant n-1$, shows that in mod- \mathcal{X} we have isomorphisms:

$$
\begin{equation*}
\Omega^{k} \mathrm{H}(A[n]) \xrightarrow{\cong} \mathrm{H}\left(\Omega_{X}^{k}(A[n])\right), \quad 0 \leqslant k \leqslant n-1 \tag{9.15}
\end{equation*}
$$

Finally applying H to the triangle $\left(T_{A[n]}^{n}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{n-1}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])\right) \longrightarrow 0
$$

Since $\Omega_{X}^{n}(A[n]):=X_{A[n]}^{n}$ lies in X, it follows that $\mathrm{H}\left(\Omega_{X}^{n-1}(A[n])[-1]\right) \cong \Omega^{2} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right)$. Hence we have an isomorphism in $\bmod -X$:

$$
\mathrm{H}\left(\Omega_{x}^{n-1}(A[n])[-1]\right) \xrightarrow{\cong} \Omega^{2} \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])\right) \xrightarrow{\cong} \Omega^{n+1} \mathrm{H}(A[n])
$$

Putting things together we have an isomorphism $\mathrm{H}(A) \cong \Omega^{n+1} \mathrm{H}(A[n])$ in $\bmod -X$, as required.
Proposition 9.9. Let \mathcal{X} be an n-strong $(n+1)$-cluster tilting subcategory of \mathcal{T}. If \mathcal{T} is $(n+1)$-Calabi-Yau, then mod- X is $(n+2)$-Calabi-Yau.

Proof. Since X is n-strong, we have $X=X[n+1]$ and therefore $\bmod -\mathcal{X}$ is Frobenius, so all objects of mod- X are Gorenstein-projective. It follows that mod- \mathcal{X} is triangulated.

1. First let $n=1$. Then $\mathcal{X}=X$ [2] and $\overline{\mathcal{T}=X}$ ^ $\mathcal{X}[1]$. By Lemma 9.8 we have an isomorphism $\Omega^{2} \mathrm{H}(A[1]) \cong$ $\mathrm{H}(A)$. Since any object of mod- X is Gorenstein-projective, this is equivalent to $\Omega^{-2} \mathrm{H}(A) \cong \mathrm{H}(A[1])$. Then by Lemma 9.6 we infer that mod- X is 3 -Calabi-Yau.
2. Now let $n \geqslant 2$. Let A be an object in $X \star X[1]$. Then by Lemma 9.8, we have an isomorphism $\mathrm{H}(A) \cong \Omega^{n+1} \mathrm{H}(A[n])$ or equivalently since mod-X is triangulated, $\Omega^{-(n+1)} \mathrm{H}(A) \cong \mathrm{H}(A[n])$. Then by Lemma 9.6 we infer that mod- \mathcal{X} is $(n+2)$-Calabi-Yau.

Now we treat the case $k=1$. Note that the following result was proved independently by IyamaOppermann, see [17].

Proposition 9.10. Let \mathcal{X} be an $(n-1)$-strong $(n+1)$-cluster tilting subcategory of \mathcal{T}, $n \geqslant 1$. If \mathcal{T} is $(n+1)$-Calabi-Yau, then the stable triangulated category GProj mod- \mathcal{X} is $(n+2)$-Calabi-Yau.

Proof. We treat separately the cases $n=1$, where the $(n-1)$-strong condition is vacuous, and $n \geqslant 2$.

1. Assume that $n=1$. We have that X is a 2 -cluster tilting subcategory of the 2 -Calabi-Yau category \mathcal{T} and $\mathcal{T}=X \star X[1]$. Let A be in \mathcal{T} such that $\mathrm{H}(A)$ is Gorenstein-projective. Then by Lemma 9.8 we know that $\Omega^{2} \mathrm{H}(A[1]) \cong \mathrm{H}(A)$. Since mod- X is 1-Gorenstein, it follows that $\Omega \mathrm{H}(A[1])$ is Gorenstein-projective. Then applying Ω^{-1} to the last isomorphism we obtain $\Omega \mathrm{H}(A[1]) \cong \Omega^{-1} \mathrm{H}(A)$ and therefore $\Omega^{-1} \Omega \mathrm{H}(A[1]) \cong$ $\Omega^{-2} \mathrm{H}(A)$. Then by Lemma 9.6 it follows that GProj mod- \mathcal{X} is 3-Calabi-Yau.
2. Assume that $n \geqslant 2$. By Lemma 9.8, for any object $A \in X_{\star} X[1]$, such that $\mathrm{H}(A)$ is Gorenstein-projective, there is a natural isomorphism in mod- X :

$$
\Omega^{n+1} \mathrm{H}(A[n]) \stackrel{\cong}{\Longrightarrow} \mathrm{H}(A)
$$

Since $\Omega \mathrm{H}(A[n])$ is Gorenstein-projective, the above isomorphism gives:

$$
\Omega^{-n} \mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{1} \mathrm{H}(A[n]), \text { hence } \Omega^{-n-1} \mathrm{H}(A) \xrightarrow{\cong} \Omega^{-1} \Omega^{1} \mathrm{H}(A[n])
$$

It follows by Lemma 9.6 that GProj mod $-X$ is $(n+2)$-Calabi-Yau.
9.3. Higher Gorenstein categories. We have seen that if X is an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of \mathcal{T} and $n \geqslant 2 k-1$, then the cluster tilted category mod- \mathcal{X} is k-Gorenstein. Moreover if $0 \leqslant k \leqslant 1$ and if \mathcal{T} is $(n+1)$-Calabi-Yau, then the stable triangulated category GProj mod- \mathcal{X} is $(n+2)$-Calabi-Yau.

In this subsection we prove that an analogous statement holds for $2 \leqslant k \leqslant n-1$ under an additional assumption.
Theorem 9.11. Let \mathcal{T} be an $(n+1)$-Calabi-Yau triangulated category over a field k. Let \mathcal{X} be an $(n-k)$ strong $(n+1)$-cluster tilting subcategory of \mathcal{T}, where $n \geqslant 2 k-1,0 \leqslant k \leqslant n-1$. Assume that any object $\mathrm{H}(C)$, where $C \in \mathcal{X}[-n+1] \star \cdots \star \mathcal{X}[-1]$, has finite projective or injective dimension.

Then the stable triangulated category GProj mod- \mathcal{X} is $(n+2)$-Calabi-Yau.
Proof. First note that since by Theorem 7.5, the cluster tilted category mod- \mathcal{X} is k-Gorenstein, then by Remark 8.2, we have that $\Omega^{k} \mathrm{H}(A)$ lies in GProj $\bmod -\mathcal{X}, \forall A \in \mathcal{T}$. We use throughout that if an object of $\bmod -X$ has finite projective dimension, then its projective dimension is at most k.

We shall show first that for any $A \in X \star X[1]$ such that $\mathrm{H}(A)$ is Gorenstein-projective, there is a natural isomorphism in the stable category GProj mod- X :

$$
\Omega^{-(n+1)} \mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{-k} \Omega^{k} \mathrm{H}(A[n])
$$

For $1 \leqslant t \leqslant n$, we have triangles

$$
\Omega_{X}^{t}(A[n]) \longrightarrow X_{A[n]}^{t-1} \longrightarrow \Omega_{X}^{t-1}(A[n]) \longrightarrow \Omega_{X}^{t}(A[n])[1]
$$

where $\Omega_{X}^{t}(A[n]) \in X$ and $\Omega_{x}^{0}(A[n])=A[n]$. Using that, by Lemma $9.4, \mathcal{T}(X, A[i])=0,1 \leqslant i \leqslant n-1$, and $\mathcal{T}(X, X[-i])=0,1 \leqslant i \leqslant n-k$, we deduce a short exact sequence:

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{1}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{0}\right) \longrightarrow \mathrm{H}(A[n]) \longrightarrow 0
$$

and isomorphisms:

$$
\mathrm{H}\left(\Omega_{X}^{1}(A[n])[-t]\right)=0, \quad 1 \leqslant t \leqslant n-k
$$

Using this and applying H to the triangle $\left(T_{A[n]}^{2}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{2}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{1}\right) \longrightarrow \mathrm{H}\left(\Omega_{X}^{1}(A[n])\right) \longrightarrow 0
$$

and isomorphisms:

$$
\mathrm{H}\left(\Omega_{X}^{2}(A[n])[-k]\right)=0, \quad 1 \leqslant k \leqslant n-k-1
$$

Continuing in this way, and finally applying H to the triangle $\left(T_{A[n]}^{k-1}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{k-1}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{k-2}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{k-2}(A[n])\right) \longrightarrow 0
$$

and an isomorphism:

$$
\mathrm{H}\left(\Omega_{X}^{k-1}(A[n])[-1]\right)=0
$$

Finally applying H to the triangle $\left(T_{A[n]}^{k}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{X}^{k}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{k-1}\right) \longrightarrow \mathrm{H}\left(\Omega_{X}^{k-1}(A[n])\right) \longrightarrow 0
$$

From the above exact sequences we deduce that:

$$
\begin{equation*}
\Omega^{k} \mathrm{H}(A[n]) \xrightarrow{\cong} \mathrm{H}\left(\Omega_{x}^{k}(A[n])\right) \tag{9.16}
\end{equation*}
$$

On the other hand from the cellular tower of $A[n]$ we have triangles:

$$
\Omega_{x}^{t}(A[n])[t-1] \longrightarrow \operatorname{Cell}_{t-1}(A[n]) \longrightarrow A[n] \longrightarrow \Omega_{x}^{t}(A[n])[t], \quad 1 \leqslant t \leqslant n \quad\left(C_{A[n]}^{t-1}\right)
$$

Applying H and using that $\mathrm{H}(A[i])=0,1 \leqslant i \leqslant n-1$, and, by Proposition $4.3, \mathrm{H}\left(\Omega_{X}^{t}(A[n])[i]\right)=0,1 \leqslant i \leqslant t$, we deduce an exact sequence

$$
\mathrm{H}\left(\text { Cell }_{t-1}(A[n])[-n]\right) \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{x}^{t}(A[n])[-n+t]\right) \longrightarrow \mathrm{H}\left(\text { Cell }_{t-1}(A[n])[-n+1]\right) \longrightarrow 0
$$

Since Cell ${ }_{t-1}(A[n])[-n]$ lies in $(X \star X[1] \star \cdots \star X[t-1])[-n]=X[-n] \star X[-n+1] \star \cdots \star X[-n+t-1]$ which is contained in $X[-n] \star X[-n+1] \star \cdots \star X[-1]$, since $t \leqslant n$, by Lemma 9.5 we deduce short exact sequences

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}(A) \longrightarrow \mathrm{H}\left(\Omega_{x}^{t}(A[n])[-n+t]\right) \longrightarrow \mathrm{H}\left(\operatorname{Cell}_{t-1}(A[n])[-n+1]\right) \longrightarrow 0 \tag{9.17}
\end{equation*}
$$

for $2 \leqslant t \leqslant n$. Moreover we infer isomorphisms:

$$
\begin{aligned}
& \mathrm{H}\left(\Omega_{x}^{t}(A[n])[-n+t+1]\right) \xrightarrow{\cong} \mathrm{H}\left(\operatorname{Cell}_{t-1}(A[n])[-n+2]\right) \\
& \mathrm{H}\left(\Omega_{x}^{t}(A[n])[-n+t+2]\right) \xrightarrow{\cong} \mathrm{H}\left(\operatorname{Cell}_{t-1}(A[n])[-n+3]\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{H}\left(\Omega_{x}^{t}(A[n])[t-2]\right) \xrightarrow{\cong} \mathrm{H}\left(\operatorname{Cell}_{t-1}(A[n])[-1]\right) \tag{9.18}
\end{equation*}
$$

Consider the short exact sequence (9.17) for $t=n-1$. Since Cell ${ }_{n-2}(A[n])[-n+1]$ lies in $X[-n+1] \star \cdots X[-1]$, it follows that $\operatorname{pd} \mathrm{H}\left(\operatorname{Cell}_{n-2}(A[n])[-n+1]\right) \leqslant k$. Then (9.17) gives us an isomorphism in mod- \mathcal{X} :

$$
\begin{equation*}
\Omega^{k} \mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])[-1]\right) \tag{9.19}
\end{equation*}
$$

From the triangle $\left(T_{A[n]}^{n}\right)$, we have an exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{n-1}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])\right) \longrightarrow 0
$$

Since $\Omega_{X}^{n}(A[n]):=X_{A[n]}^{n}$ lies in X, it follows that

$$
\begin{equation*}
\mathrm{H}\left(\Omega_{X}^{n-1}(A[n])[-1]\right) \stackrel{ }{\cong} \Omega^{2} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right) \tag{9.20}
\end{equation*}
$$

Consider the short exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{n-2}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])\right) \longrightarrow 0
$$

induced from the triangle $\left(T_{A[n]}^{n-2}\right.$. Then we have a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-1}(A[n])\right) \longrightarrow \Omega \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])\right) \longrightarrow 0 \tag{9.21}
\end{equation*}
$$

Setting $t=n-2$ in (9.18), we have an isomorphism $\mathbf{H}\left(\Omega_{x}^{n-2}(A[n])[-1]\right) \cong \mathbf{H}\left(\operatorname{Cell}_{n-3}(A[n])[-n+2]\right)$. Since Cell $_{n-3}(A[n])[-n+2]$ lies in $X[-n+2] \star \cdots \star X[-1]$, it follows that by hypothesis that $\mathrm{pd} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])[-1]\right) \leqslant$ k. Hence from (9.21) we get an isomorphism $\Omega^{k+1} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right) \xrightarrow{\cong} \Omega^{k+2} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])\right)$, which since $\Omega^{k} \bmod -\mathcal{X}=$ GProj mod- \mathcal{X}, gives us an isomorphism:

$$
\begin{equation*}
\Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right) \xrightarrow{\cong} \Omega^{k+1} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])\right) \tag{9.22}
\end{equation*}
$$

Next consider the exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-3}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])\right) \longrightarrow \mathrm{H}\left(X_{A[n]}^{n-3}\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-3}(A[n])\right) \longrightarrow 0
$$

induced from the triangle $\left(T_{A[n]}^{n-3}\right)$. Then we have a short exact sequence

$$
0 \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-3}(A[n])[-1]\right) \longrightarrow \mathrm{H}\left(\Omega_{x}^{n-2}(A[n])\right) \longrightarrow \Omega \mathrm{H}\left(\Omega_{x}^{n-3}(A[n])\right) \longrightarrow 0
$$

Setting $t=n-3$ in (9.18), we have an isomorphism $\mathrm{H}\left(\Omega_{x}^{n-3}(A[n])[-1]\right) \cong \mathrm{H}\left(\operatorname{Cell}_{n-4}(A[n])[-n+3]\right)$. Since Cell $_{n-4}(A[n])[-n+3]$ lies in $X[-n+2] \star \cdots \star \mathcal{X}[-1]$, it follows that by hypothesis that $\mathrm{pd} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])[-1]\right) \leqslant$ k. Hence from the above exact sequence we obtain as above an isomorphism:

$$
\begin{equation*}
\Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])\right) \xrightarrow{\cong} \Omega^{k+1} \mathrm{H}\left(\Omega_{X}^{n-3}(A[n])\right) \tag{9.23}
\end{equation*}
$$

Combining (9.22) and (9.23) we arrive at an isomorphism:

$$
\Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right) \stackrel{\cong}{\Longrightarrow} \Omega^{k+1} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])\right) \xrightarrow{\cong} \Omega^{k+2} \mathrm{H}\left(\Omega_{X}^{n-3}(A[n])\right)
$$

Continuing in this way we obtain inductively isomorphisms:

$$
\begin{align*}
& \Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right) \stackrel{\cong}{\cong} \Omega^{k+1} \mathrm{H}\left(\Omega_{X}^{n-2}(A[n])\right) \xrightarrow{\cong} \Omega^{k+2} \mathrm{H}\left(\Omega_{X}^{n-3}(A[n])\right) \stackrel{\cong}{\cong} \cdots \\
& \xlongequal{\cong} \Omega^{n-2} \mathrm{H}\left(\Omega_{X}^{k+1}(A[n])\right) \xrightarrow{\cong} \Omega^{n-1} \mathrm{H}\left(\Omega_{X}^{k}(A[n])\right) \xrightarrow{\cong} \Omega^{n-1} \Omega^{k} \mathrm{H}(A[n]) \tag{9.24}
\end{align*}
$$

Combining the isomorphisms (9.22)-(9.24) we have isomorphisms:

$$
\begin{gather*}
\Omega^{k} \mathrm{H}(A) \stackrel{\cong}{\rightrightarrows} \Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])[-1]\right) \xrightarrow{\cong} \Omega^{2} \Omega^{k} \mathrm{H}\left(\Omega_{X}^{n-1}(A[n])\right) \stackrel{\cong}{\Longrightarrow} \Omega^{2} \Omega^{n-1} \Omega^{k} \mathrm{H}(A[n]) \stackrel{\cong}{\cong} \\
\Omega^{n+1} \Omega^{k} \mathrm{H}(A[n]) \xrightarrow{\cong} \Omega^{k} \Omega^{n+1} \mathrm{H}(A[n]) \tag{9.25}
\end{gather*}
$$

Since $\mathrm{H}(A)$ and $\Omega^{n+1} \mathrm{H}(A[n])$ are Gorenstein-projective, we infer an isomorphism:

$$
\mathrm{H}(A) \xrightarrow{\cong} \Omega^{n+1} \mathrm{H}(A[n])
$$

Hence in the stable category GProj mod- X we have isomorphisms:

$$
\mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{-k} \Omega^{k} \mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{-k} \Omega^{k} \Omega^{n+1} \mathrm{H}(A[n]) \xrightarrow{\cong} \Omega^{n+1} \Omega^{-k} \Omega^{k} \mathrm{H}(A[n])
$$

We infer that:

$$
\Omega^{-(n+1)} \mathrm{H}(A) \stackrel{\cong}{\Longrightarrow} \Omega^{-k} \Omega^{k} \mathrm{H}(A[n])
$$

as required. Then by Lemma 9.6 we infer that GProj mod- X is $(n+2)$-Calabi-Yau.

Note that Theorem 9.7 is a special case of Theorem 9.11 , since X is $(n-k)$-strong and $0 \leqslant k \leqslant 1$, then as easily seen $\mathrm{H}(C)=0$, for any $C \in \mathcal{X}[-n+1] \star \cdots \star \mathcal{X}[-1]$.

From now and on until the end of this section we fix an $(n+1)$-Calabi-Yau triangulated category \mathcal{T} over a field k, for instance $\mathcal{T}=\mathscr{C}_{H}^{(n+1)}$ the $(n+1)$-cluster category of a finite-dimensional hereditary k-algebra H. Let \mathcal{X} be an $(n-k)$-strong $(n+1)$-cluster tilting subcategory of $\mathcal{T}, 0 \leqslant k \leqslant n-1$, and assume that if $k \geqslant 2$, then $n \geqslant 2 k-1$ and any object $\mathrm{H}(C)$, where $C \in X[-n+1] \star \cdots \star X[-1]$, has finite projective or injective dimension.

Corollary 9.12. The triangulated category Gproj mod- \mathcal{X} has Auslander-Reiten triangles and the AuslanderReiten translation is given by:

Recall that the triangulated category of singularities, in the sense of Orlov, see [24], associated to a finitedimensional k-algebra Λ, is the Verdier quotient $\mathbf{D}^{b}(\bmod -\Lambda) / \mathbf{K}^{b}(\operatorname{proj} \Lambda)$ of the bounded derived category of finite-dimensional Λ-modules by the thick subcategory of perfect complexes.
Corollary 9.13. If $X=$ add T for some object $T \in \mathcal{T}$, then the triangulated category of singularities $\mathbf{D}_{\text {sing }}\left(\operatorname{End}_{\mathcal{T}}(T)\right)$ associated to the k-algebra $\operatorname{End}_{\mathcal{T}}(T)$ is $(n+2)$-Calabi-Yau.
Proof. By Theorem 9.11 the endomorphism algebra $\operatorname{End}_{\mathcal{T}}(T)$ is k-Gorenstein. Since \mathcal{T} is $(n+1)$-Calabi-Yau, by Theorem 7.5, the stable triangulated category $\operatorname{Gproj}\left(\operatorname{End}_{\mathcal{T}}(T)\right)$ of finitely generated Gorenstein-projective $\operatorname{End}_{\mathcal{T}}(T)$-modules is $(n+2)$-Calabi-Yau. Then the assertion follows from the well-known fact that over a Gorenstein algebra Λ the triangulated category of singularities $\mathbf{D}_{\text {sing }}(\Lambda)$ of Λ is triangle equivalent to the stable category Gproj Λ of finitely generated Gorenstein-projective modules over Λ.
Corollary 9.14. The stable category $\bmod -\operatorname{Gproj}(X)$ of coherent functors over the stable category $\operatorname{Gproj}(\mathcal{X})$ of Gorenstein-projective coherent functors over \bar{X} is a triangulated category which is $(3 n+5)$-Calabi-Yau.

Proof. By Theorem 9.11, the triangulated category $\operatorname{Gproj}(X)$ is $(n+2)$-Calabi-Yau. The category of coherent functors mod-Gproj \mathcal{X} over $\operatorname{Gproj} X$ is Frobenius and therefore its stable category mod-Gproj X is triangulated. The the assertion follows by a result of Keller which says that if a triangulated category \mathscr{C} is d-Calabi-Yau, then the stable category mod- \mathscr{C} of coherent functors over \mathscr{C} is $(3 d-1)$-Calabi-Yau.

Let Λ be a finite-dimensional k-algebra over a field k and assume that Λ is of finite CM-type. Let G be an additive generator of $G \operatorname{proj} \Lambda$, i.e. $G p r o j \Lambda=\operatorname{add} G$. The endomorphism algebra $\operatorname{End}_{\Lambda}(G)$ of G is called the Auslander-Cohen-Macaulay algebra of Λ, and its stable endomorphism version $\underline{E n d}_{\Lambda}(G):=\underline{\operatorname{Hom}}_{\Lambda}(G, G)$, is called the stable Auslander-Cohen-Macaulay algebra of Λ. Note that $\underline{E n d}_{\Lambda}(G)$ is self-injective, see [10]. Now as a consequence of Corollary 9.14 we have the following.

Corollary 9.15. If the cluster-tilted algebra $\operatorname{End}_{\mathcal{T}}(T)$ is of finite Cohen-Macaulay type and G is an additive generator of $\operatorname{Gproj}_{\operatorname{End}}^{\mathcal{T}}(T)$, then the stable module category $\bmod ^{-E_{n}}(G)$ is $(3 n+5)$-Calabi-Yau.

Remark 9.16. In this section we considered $((n-k)$-strong $)(n+1)$-cluster tilting subcategories X in triangulated categories \mathcal{T} which are assumed to be d-Calabi-Yau, for $d=n+1$. By Serre duality we have $\mathrm{DT}(\mathcal{X}, \mathcal{X}) \cong \mathcal{T}(X, X[d])$. If $0<d<n+1$, it follows that $\mathrm{DT}(\mathcal{X}, \mathcal{X})=0$ and therefore $\mathcal{X}=0$. If $d=n+k$, where $2 \leqslant k \leqslant n-1$, and X is $(n-k)$-strong with $n \geqslant 2 k-1$, then we know by Corollary 7.4 that $X[n+k] \subseteq X[k-1] \star X[k] \star \cdots \star X[2 k-1]$. Since $2 k-1 \leqslant n$, this easily implies that $\mathcal{T}(X, X[n+k])=0$ and then again $\mathcal{X}=0$. Therefore a d-Calabi-Yau triangulated category \mathcal{T} may contain a non-trivial $(n+1)$-cluster tilting subcategory, only if $d \geqslant n+1$, and may contain a non-trivial ($n-k$)-strong $(n+1)$-cluster tilting subcategories, only if $d \notin\{1,2, \cdots, n, n+2, \cdots, 2 n\}$.

10. Global Dimension of Non-Stable Cluster Tilting Subcategories

In this section we are interested in the non-stable versions of the results of the previous sections and in particular we are concerned with the estimation of the global dimension of the category of coherent functors over a cluster-tilting subcategory of an abelian category induced by a cluster-tilting subcategory of its Gorenstein-projectives.

Let \mathscr{A} be an abelian category and $\mathcal{M} \subseteq \mathscr{A}$ a full subcategory. In analogy with the triangulated case define

$$
\mathcal{M}_{n}^{\perp}=\left\{A \in \mathscr{A} \mid \operatorname{Ext}^{k}(\mathcal{M}, A)=0,1 \leqslant k \leqslant n\right\} \quad \text { and } \quad{ }_{n}^{\perp} \mathcal{M}=\left\{A \in \mathscr{A} \mid \operatorname{Ext}^{k}(A, \mathcal{M})=0,1 \leqslant k \leqslant n\right\}
$$

Then \mathcal{M} is called n-rigid if $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$ or equivalently $\mathcal{M} \subseteq{ }_{n}^{\perp} \mathcal{M}$.

Lemma 10.1. Let \mathscr{A} be an abelian category with enough projectives. Then for any object $A \in \mathscr{A}$ with finite projective dimension we have $A=0$ if and only if $\operatorname{Ext}^{k}(A, P)=0, \forall P \in \operatorname{Proj} \mathscr{A}, 0 \leqslant k \leqslant \operatorname{pd} A$.

Proof. Let pd $A=n$ and let $0 \longrightarrow P^{n} \longrightarrow P^{n-1} \longrightarrow \cdots \longrightarrow P^{1} \longrightarrow P^{0} \longrightarrow A \longrightarrow 0$ be a projective resolution of A. Then $0=\operatorname{Ext}^{n}\left(A, P^{n}\right) \cong \operatorname{Ext}^{1}\left(\Omega^{n-1} A, P^{n}\right)$, so the sequence $0 \longrightarrow P^{n} \longrightarrow P^{n-1} \longrightarrow$ $\Omega^{n-1} A \longrightarrow 0$ splits and therefore $\Omega^{n-1} A$ is projective. Then $\operatorname{Ext}^{1}\left(\Omega^{n-2} A, \Omega^{n-1} A\right) \cong \operatorname{Ext}^{n-1}\left(A, \Omega^{n-1} A\right)=0$, so $0 \longrightarrow \Omega^{n-1} A \longrightarrow P^{n-2} \longrightarrow \Omega^{n-2} A \longrightarrow 0$ splits and therefore $\Omega^{n-2} A$ is projective. Continuing in this way we see that $\Omega^{1} A$ is projective. Then $0=\operatorname{Ext}^{1}\left(A, \Omega^{1} A\right)=0$, so the sequence $0 \longrightarrow \Omega^{1} A \longrightarrow P^{0} \longrightarrow A \longrightarrow 0$ splits and therefore A is projective. Then $A=0$ since $\mathscr{A}(A, A)=0$.

From now on, let \mathscr{A} be an abelian category with enough projectives and assume that \mathcal{M} is a contravariantly finite subcategory of \mathscr{A} such that $\operatorname{Proj} \mathscr{A} \subseteq \mathcal{M}$.

Since \mathcal{M} is contravariantly finite in \mathscr{A}, the category mod- \mathcal{M} is abelian. We consider the, fully faithful since $\operatorname{Proj} \mathscr{A} \subseteq \mathcal{M}$, functor

$$
\mathbb{H}: \mathscr{A} \longrightarrow \bmod -\mathcal{M}, \quad \mathbb{H}(A)=\left.\mathscr{A}(-, A)\right|_{\mathcal{M}}
$$

Then \mathbb{H} admits an exact left adjoint which is given by the restriction functor $\mathbb{R}: \bmod -\mathcal{M} \longrightarrow \bmod -\operatorname{Proj} \mathscr{A} \approx \mathscr{A}$, induced by the inclusion $\operatorname{Proj} \mathscr{A} \subseteq \mathcal{M}$. Clearly $\operatorname{Ker} \mathbb{R}$ consists of all coherent functors $F: \mathcal{N}^{\circ \mathrm{p}} \longrightarrow \mathscr{A} b$ which admit a projective presentation $\mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow F \longrightarrow 0$ where the map $M^{1} \longrightarrow M^{0}$ is an epimorphism in \mathscr{A}. Further $\operatorname{Ker} \mathbb{R}$ coincides with the full subcategory of mod- \mathcal{M} consisting of all coherent functors over \mathcal{M} vanishing on the projectives and is equivalent to the category mod- \mathcal{M} of coherent functors over the stable category $\underline{\mathcal{M}}^{\mathrm{op}} \longrightarrow \mathscr{A} b$ and is Hence we have a short exact sequence of abelian categories

$$
\begin{equation*}
0 \longrightarrow \bmod -\underline{\mathcal{M}} \longrightarrow \bmod -\mathcal{M} \longrightarrow \mathscr{A} \longrightarrow 0 \tag{10.1}
\end{equation*}
$$

Let $F \in \bmod -\mathcal{M}$, and fix throughout a projective presentation $\mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow F \longrightarrow 0$ of F. Then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{H}\left(A_{F}\right) \longrightarrow \mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow F \longrightarrow 0 \tag{10.2}
\end{equation*}
$$

where $A_{F}=\operatorname{Ker}\left(M^{1} \longrightarrow M^{0}\right)$ and then $\Omega(F)=\operatorname{Im}\left(\mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right)\right)$ and $\mathbb{H}\left(A_{F}\right)=\Omega^{2}(F)$.
Let $A \in \mathscr{A}$. Then there exists a long exact sequence, called an \mathcal{M}-resolution of A,

$$
\begin{equation*}
\cdots \longrightarrow M_{A}^{n} \longrightarrow M_{A}^{n-1} \longrightarrow \cdots \longrightarrow M_{A}^{1} \longrightarrow M_{A}^{0} \longrightarrow A \longrightarrow 0 \tag{10.3}
\end{equation*}
$$

such that its image under \mathbb{H} is a projective resolution of $\mathbb{H}(A)$. This is defined as the Yoneda composition of short exact sequences $0 \longrightarrow K_{A}^{i+1} \longrightarrow M_{A}^{i} \longrightarrow K_{A}^{i} \longrightarrow 0$ constructed inductively, where each map $M_{A}^{i} \longrightarrow K_{A}^{i}$ is a right \mathcal{M}-approximation of $K^{i}, \forall i \geqslant 0$, and $K_{A}^{0}=A$. Note that the right \mathcal{M}-approximations are epics since $\operatorname{Proj} \mathscr{A} \subseteq \mathcal{M}$. It follows that projective resolutions of $F \in \bmod -\mathcal{M}$ are of the form

$$
\begin{equation*}
\cdots \longrightarrow \mathbb{H}\left(M_{A_{F}}^{n}\right) \longrightarrow \mathbb{H}\left(M_{A_{F}}^{n-1}\right) \longrightarrow \cdots \longrightarrow \mathbb{H}\left(M_{A_{F}}^{0}\right) \longrightarrow \mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow F \longrightarrow 0 \tag{10.4}
\end{equation*}
$$

where $\mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow F \longrightarrow 0$ and $A_{F}=\operatorname{Ker}\left(M^{1} \longrightarrow M^{0}\right)$.
Lemma 10.2. (i) For any object $F \in \bmod -\mathcal{M}$ the following are equivalent:
(a) $F \in \bmod -\underline{\mathcal{M}}$
(b) $\mathrm{Ext}^{k}(F, \mathbb{H}(A))=0,0 \leqslant k \leqslant 1, \forall A \in \mathscr{A}$.

If $F \in \bmod -\underline{\mathcal{M}}$ and $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$, then there are isomorphisms:

$$
\left.\left.\left.\left.F \cong \operatorname{Ext}^{1}\left(-, A_{F}\right)\right|_{\mathcal{M}} \cong \operatorname{Ext}^{2}\left(-, K_{A_{F}}^{1}\right)\right|_{\mathcal{M}} \cong \cdots \cong \operatorname{Ext}^{n-1}\left(-, K_{A_{F}}^{n-2}\right)\right|_{\mathcal{M}} \cong \operatorname{Ext}^{n}\left(-, K_{A_{F}}^{n-1}\right)\right|_{\mathcal{M}}
$$

(ii) For any object $B \in \mathscr{A}$, and any $n \geqslant 1$, the following are equivalent:
(a) $B \in \mathcal{M}_{n}^{\top}$.
(b) For any $A \in \mathscr{A}$, there are isomorphisms:

$$
\operatorname{Ext}^{k}(A, B) \xrightarrow{\cong} \operatorname{Ext}^{k}(\mathbb{H}(A), \mathbb{H}(B)), \quad 1 \leqslant k \leqslant n
$$

(iii) The following are equivalent:
(a) $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$.
(b) For any $F \in \bmod -\underline{\mathcal{M}} \subseteq \bmod -\mathcal{M}$ and any $X \in \mathcal{M}$, we have:

$$
\operatorname{Ext}^{k}(F, \mathbb{H}(X))=0, \quad 0 \leqslant k \leqslant n+1
$$

Proof. (i) (b) \Rightarrow (a) Since F lies in mod- \mathcal{M}, the map $M^{1} \longrightarrow M^{0}$ in (10.2) is epic and we have an exact sequence $0 \longrightarrow A_{F} \longrightarrow M^{1} \longrightarrow M^{0} \longrightarrow 0$ which, for any $B \in \mathscr{A}$, induces a long exact sequence $0 \longrightarrow \mathscr{A}\left(M^{0}, B\right) \longrightarrow \mathscr{A}\left(M^{1}, B\right) \longrightarrow \mathscr{A}(A, B) \longrightarrow \operatorname{Ext}^{1}\left(M^{0}, B\right) \longrightarrow \cdots$. Since \mathbb{H} is fully faithful, the monomorphism $\mathscr{A}\left(M^{0}, B\right) \longrightarrow \mathscr{A}\left(M^{1}, B\right)$ is isomorphic to the map $\left(\mathbb{H}\left(M^{0}\right), \mathbb{H}(B)\right) \longrightarrow\left(\mathbb{H}\left(M^{1}\right), \mathbb{H}(B)\right)$ whose kernel is isomorphic to $(F, \mathbb{H}(B))$. We infer that $(F, \mathbb{H}(B))=0$. This implies that we have an exact sequence $0 \longrightarrow\left(\mathbb{H}\left(M^{0}\right), \mathbb{H}(B)\right) \longrightarrow(\Omega(F), \mathbb{H}(B)) \longrightarrow \operatorname{Ext}^{1}(F, \mathbb{H}(B)) \longrightarrow 0$. On the other hand we have a long exact sequence $0 \longrightarrow(\Omega(F), \mathbb{H}(B)) \longrightarrow\left(\mathbb{H}\left(M^{1}\right), \mathbb{H}(B)\right) \longrightarrow(\mathbb{H}(A), \mathbb{H}(B)) \longrightarrow \operatorname{Ext}^{1}(F, \mathbb{H}(B)) \longrightarrow 0$. Since \mathbb{H} is fully faithful, the map $\mathscr{A}\left(M^{1}, B\right) \longrightarrow \mathscr{A}(A, B)$ is isomorphic to the map $\left(\mathbb{H}\left(M^{1}\right), \mathbb{H}(B)\right) \longrightarrow(\mathbb{H}(A), \mathbb{H}(B))$. By diagram chasing this implies that the map $\left(\mathbb{H}\left(M^{0}\right), \mathbb{H}(B)\right) \longrightarrow(\Omega(F), \mathbb{H}(B))$ is an isomorphism. Hence $\mathrm{Ext}^{1}(F, \mathbb{H}(B))=0$ as required.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$ It suffices to show that the map $M^{1} \longrightarrow M^{0}$ in (10.2) is epic. Let $C=\operatorname{Coker}\left(M^{1} \longrightarrow M^{0}\right)$. Then $\mathbb{H}\left(M^{0}\right) \longrightarrow \mathbb{H}(C)$ factorizes through F. Since by hypothesis $(F, \mathbb{H}(B))=0, \forall B \in \mathscr{A}$, it follows that the map $\mathbb{H}\left(M^{0}\right) \longrightarrow \mathbb{H}(C)$, or equivalently the map $M^{0} \longrightarrow C$ is zero. Hence $C=0$.

Assume now that $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$. Then the map $M^{1} \longrightarrow M^{0}$ inducing the exact sequence (10.2) is an epimorphism, so we have a short exact sequence $0 \longrightarrow A_{F} \longrightarrow M^{1} \longrightarrow M^{0} \longrightarrow 0$ in \mathscr{A}. Since Ext $\left.{ }^{1}\left(-, M^{1}\right)\right|_{\mathcal{M}}=0$, it follows that $\left.F \cong \operatorname{Ext}^{1}\left(-, A_{F}\right)\right|_{\mathcal{M}}$. Now consider an \mathcal{M}-resolution $\cdots \longrightarrow M_{A_{F}}^{1} \longrightarrow M_{A_{F}}^{0} \longrightarrow A_{F} \longrightarrow 0$ which is build from short exact sequences $0 \longrightarrow K_{A_{F}}^{i} \longrightarrow M_{A_{F}}^{i-1} \longrightarrow K_{A_{F}}^{i-1} \longrightarrow 0$, where the last map is a right \mathcal{M}-approximation. Using that $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$, as above we have isomorphisms $\left.\left.\operatorname{Ext}^{1}\left(-, A_{F}\right)\right|_{\mathcal{M}} \cong \operatorname{Ext}^{2}\left(-, K_{A_{F}}^{1}\right)\right|_{\mathcal{M}} \cong$ $\left.\left.\cdots \cong \operatorname{Ext}^{n}\left(-, K_{A_{F}}^{n-2}\right)\right|_{\mathcal{M}} \cong \operatorname{Ext}^{n}\left(-, K_{A_{F}}^{n-1}\right)\right|_{\mathcal{M}}$ and the assertion follows.
(ii) $(\mathrm{b}) \Rightarrow$ (a) Setting $A=X \in \mathcal{M}$, and using that $\mathbb{H}(X)$ is projective in mod- \mathcal{M}, we infer that Ext ${ }^{k}(X, B)=$ $0,1 \leqslant k \leqslant n$. Hence B lies in \mathcal{M}_{n}^{\perp}.
(a) \Rightarrow (b) First let $n=1$. Consider the short exact sequence $0 \longrightarrow K^{1} \longrightarrow M^{0} \longrightarrow A \longrightarrow 0$. Then we have an exact sequence $0 \longrightarrow \mathbb{H}\left(K^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow \mathbb{H}(A) \longrightarrow 0$. Using that Ext ${ }^{1}\left(M^{0}, B\right)=0$, we then have an exact sequence $0 \longrightarrow \mathscr{A}(A, B) \longrightarrow \mathscr{A}\left(M^{0}, B\right) \longrightarrow \mathscr{A}\left(K^{1}, B\right) \longrightarrow \operatorname{Ext}^{1}(A, B) \longrightarrow 0$. Since $\mathbb{H}\left(M^{0}\right)$ is projective, we also have an exact sequence $0 \longrightarrow(\mathbb{H}(A), \mathbb{H}(B)) \longrightarrow\left(\mathbb{H}\left(M^{0}\right), \mathbb{H}(B)\right) \longrightarrow\left(\mathbb{H}\left(K^{1}\right), \mathbb{H}(B)\right) \longrightarrow$ $\operatorname{Ext}^{1}(\mathbb{H}(A), \mathbb{H}(B)) \longrightarrow 0$. Since the left exact functor \mathbb{H} is fully faithful, the sequences $0 \longrightarrow \mathscr{A}(A, B) \longrightarrow$ $\mathscr{A}\left(M^{0}, B\right) \longrightarrow \mathscr{A}\left(K^{1}, B\right)$ and $0 \longrightarrow(\mathbb{H}(A), \mathbb{H}(B)) \longrightarrow\left(\mathbb{H}\left(M^{0}\right), \mathbb{H}(B)\right) \longrightarrow\left(\mathbb{H}\left(K^{1}\right), \mathbb{H}(B)\right)$ are isomorphic. It follows that there is an isomorphism $\operatorname{Ext}^{1}(A, B) \cong \operatorname{Ext}^{1}(\mathbb{H}(A), \mathbb{H}(B))$. Applying $\mathscr{A}(-, B)$ to the short exact sequences $0 \longrightarrow K^{i} \longrightarrow M^{i-1} \longrightarrow K^{i-1} \longrightarrow 0,1 \leqslant i \leqslant n-1$, and using $\operatorname{Ext}^{k}(\mathcal{M}, \mathcal{M})=0,1 \leqslant k \leqslant n$, it is easy to see by dimension shift that we have isomorphisms: $\operatorname{Ext}^{n}(A, B) \cong \operatorname{Ext}^{n-1}\left(K^{1}, B\right) \cong \cdots \cong \operatorname{Ext}^{1}\left(K^{n-1}, B\right)$. Then considering the short exact sequence $0 \longrightarrow K^{n} \longrightarrow M^{n-1} \longrightarrow K^{n-1} \longrightarrow 0$, we see, as in the case $n=1$, that we have an isomorphism $\operatorname{Ext}^{n}(A, B) \cong \operatorname{Ext}^{1}\left(K^{n-1}, B\right) \cong \operatorname{Ext}^{1}\left(\mathbb{H}\left(K^{n-1}\right), \mathbb{H}(B)\right)$. Since clearly $\mathbb{H}\left(K^{n-1}\right)=\Omega^{n-1} \mathbb{H}(A)$, we infer that we have an isomorphism $\operatorname{Ext}^{n}(A, B) \cong \operatorname{Ext}^{1}(\mathbb{H}(A), \mathbb{H}(B))$ and the assertion follows by induction.
(iii) $(\mathrm{b}) \Rightarrow$ (a) Let $X \in \mathcal{M}$ and consider the functor $(-, \underline{X}): \mathcal{N}^{\text {op }} \longrightarrow \mathscr{A} b, M^{\prime} \longmapsto \mathcal{\mathcal { M }}\left(M^{\prime}, X\right)$. If $(\dagger): 0 \longrightarrow \Omega(X) \longrightarrow P_{X} \longrightarrow X \longrightarrow 0$ is an exact sequence, where P_{X} is projective, then it is easy to see that we have an exact sequence $\mathbb{H}\left(P_{X}\right) \longrightarrow \mathbb{H}(X) \longrightarrow(-, \underline{X}) \longrightarrow 0$, so $(-, \underline{X})$ lies in mod- $\underline{\mathcal{M}} \subseteq$ mod- \mathcal{M}, and the exact sequence (10.2) for $F=(-, \underline{X})$ takes the form

$$
0 \longrightarrow \mathbb{H}(\Omega(X)) \longrightarrow \mathbb{H}\left(P_{X}\right) \longrightarrow \mathbb{H}(X) \longrightarrow(-, \underline{X}) \longrightarrow 0
$$

Let $G=\operatorname{Im}\left(\mathbb{H}\left(P_{X}\right) \longrightarrow \mathbb{H}(X)\right)$. Clearly then $\operatorname{Ext}^{2}((-, \underline{X}), \mathbb{H}(X)) \cong \operatorname{Ext}^{1}\left(G, \mathbb{H}(\mathcal{M}) \cong \operatorname{Coker}\left[\mathscr{A}\left(P_{X}, \mathcal{M}\right) \longrightarrow\right.\right.$ $\mathscr{A}(\Omega(X), \mathcal{M})] \cong \operatorname{Ext}^{1}(X, \mathcal{M})$. It follows by hypothesis that $\operatorname{Ext}^{1}(X, \mathcal{M})=0$. Next for $2 \leqslant k \leqslant n+1$ we have $0=\mathrm{Ext}^{k+1}((-, \underline{X}), \mathbb{H}(\mathcal{M})) \cong \operatorname{Ext}^{k-1}(\mathbb{H}(\Omega(X)), \mathbb{H}(\mathcal{M}))$. Since $\operatorname{Ext}^{1}(X, \mathcal{M})=0$ and X is arbitrary, it follows from (ii) that for any object $A \in \mathcal{M}$ we have an isomorphism $\operatorname{Ext}^{1}(A, \mathcal{M}) \cong \operatorname{Ext}^{1}(\mathbb{H}(A), \mathbb{H}(\mathcal{M}))$, in particular $\operatorname{Ext}^{1}(\Omega(X), \mathcal{M}) \cong \operatorname{Ext}^{1}(\mathbb{H}(\Omega(X)), \mathbb{H}(\mathcal{M}))$. Since the last space is zero, we have $\operatorname{Ext}^{1}(\Omega(X), \mathcal{M}) \cong \operatorname{Ext}^{2}(X, \mathcal{M})=$ 0 . It follows that $\operatorname{Ext}^{2}(\mathcal{M}, \mathcal{M})=0$ and therefore $\mathcal{M} \subseteq \mathcal{M}_{2}^{\perp}$. Then by (ii) we have an isomorphism $\operatorname{Ext}^{3}(X, \mathcal{M}) \cong$ $\operatorname{Ext}^{2}(\Omega(X), \mathcal{M}) \cong \operatorname{Ext}^{2}(\mathbb{H}(\Omega(X)), \mathbb{H}(\mathcal{M}))$. Since the last space is zero we infer that $\operatorname{Ext}^{3}(X, \mathcal{M})=0$ and therefore $\mathcal{M} \subseteq \mathcal{M}_{3}^{\perp}$. Continuing in this way we have finally that $\mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$ as required.
(a) \Rightarrow (b) From (10.2) we see that $\operatorname{Ext}^{k+2}\left(F, \mathbb{H}(X) \cong \operatorname{Ext}^{k}\left(\mathbb{H}\left(A_{F}\right), \mathbb{H}(X)\right), \forall k \geqslant 1\right.$. Since $\mathcal{M} \subseteq \mathcal{M}{ }_{n}^{\perp}$, by (ii) we infer isomorphisms $\operatorname{Ext}^{k+2}(F, \mathbb{H}(X)) \cong \operatorname{Ext}^{k}\left(A_{F}, X\right), 1 \leqslant k \leqslant n$. Now since $F \in$ mod- \mathcal{M}, we have a short exact sequence $0 \longrightarrow A_{F} \longrightarrow M^{1} \longrightarrow M^{0} \longrightarrow 0$. Applying $\mathscr{A}(-, X)$, with $X \in \mathcal{M}$, the induced long exact sequence gives $\operatorname{Ext}^{k}\left(A_{F}, X\right)=0,1 \leqslant k \leqslant n-1$. We infer that $\operatorname{Ext}^{k+2}(F, \mathbb{H}(X)) \cong \operatorname{Ext}^{k}\left(A_{F}, X\right)$, $1 \leqslant k \leqslant n-1$. Hence using (i) we have $\operatorname{Ext}^{k}(F, \mathbb{H}(X))=0,0 \leqslant k \leqslant 1$ and $3 \leqslant k \leqslant n+1$. Finally applying $\mathbb{H}(X)$ to the short exact sequence $0 \longrightarrow \mathbb{H}\left(A_{F}\right) \longrightarrow \mathbb{H}\left(M^{1}\right) \longrightarrow \Omega(F) \longrightarrow 0$ we have an exact sequence $\left(\mathbb{H}\left(M^{1}\right), \mathbb{H}(X)\right) \longrightarrow(\mathbb{H}(A), \mathbb{H}(X)) \longrightarrow \operatorname{Ext}^{2}\left(F, \mathbb{H}(X) \longrightarrow 0\right.$. Since the map $\left(\mathbb{H}\left(M^{1}\right), \mathbb{H}(X)\right) \longrightarrow$
$(\mathbb{H}(A), \mathbb{H}(X))$ is isomorphic to the map $\left(M^{1}, X\right) \longrightarrow(A, X)$ which is an epimorphism since $\operatorname{Ext}^{1}\left(M^{0}, X\right)=0$, we infer that $\operatorname{Ext}^{2}(F, \mathbb{H}(X))=0$. Hence $\operatorname{Ext}^{k}(F, \mathbb{H}(X))=0,0 \leqslant k \leqslant n+1$, as required.

Proposition 10.3. If $\operatorname{Proj} \mathscr{A} \varsubsetneqq \mathcal{M} \subseteq \mathcal{M}_{n}^{\perp}$, then gl. dim mod- $\mathcal{M} \geqslant n+2$. Moreover if $\mathcal{M}_{n}^{\perp}=\mathcal{M}$, then $\frac{\perp}{n} \mathcal{M}=\mathcal{M}$ and gl. dim mod- $\mathcal{M}=n+2$.

Proof. Since $\mathcal{M} \neq \operatorname{Proj} \mathscr{A}$, we have $\bmod -\mathcal{M} \neq 0$ so there exists $0 \neq F \in \bmod -\mathcal{M}$. If gl. $\operatorname{dim} \bmod -\mathcal{M} \leqslant n+1$, then by Lemma 1.2 (iii) we have $\operatorname{Ext}^{k}(F, \mathbb{H}(X))=0,0 \leqslant k \leqslant n+1$, and then by Lemma 10.1 it follows that $F=0$. This contradiction shows that gl. $\operatorname{dim} \bmod -\mathcal{M} \geqslant n+2$. Now assume that $\mathcal{M}{ }_{n}^{\perp}=\mathcal{M}$. To show that gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$, it suffices to show that gl. $\operatorname{dim} \bmod -\mathcal{M} \leqslant n+2$. By using the exact sequence (10.2), this holds if $\operatorname{pd} \mathbb{H}(A) \leqslant n, \forall A \in \mathscr{A}$. Since the exact sequence (10.3) becomes a projective resolution of $\mathbb{H}(A)$ after applying \mathbb{H}, it suffices to show that $\mathbb{H}\left(K^{n}\right)$ is projective, or equivalently that $K^{n} \in \mathcal{M}$. Since $\mathcal{M}_{n}^{\perp}=\mathcal{M}$, it suffices to show that $K^{n} \in \mathcal{M}_{n}^{\perp}$. Consider the extensions $0 \longrightarrow K^{i} \longrightarrow M^{i-1} \longrightarrow K^{i-1} \longrightarrow 0$, where each map $M^{i-1} \longrightarrow K^{i-1}$ is a right \mathcal{M}-approximation of K^{i-1} for $0 \leqslant i \leqslant n$ and $K^{0}:=A$. Since $\operatorname{Ext}^{k}(\mathcal{M}, \mathcal{M})=0,1 \leqslant k \leqslant n$, we have clearly $\operatorname{Ext}^{1}\left(\mathcal{M}, K^{i}\right)=0,1 \leqslant i \leqslant n$. In particular $\operatorname{Ext}^{1}\left(\mathcal{M}, K^{n}\right)=0$ and we have an isomorphism $\operatorname{Ext}^{2}\left(\mathcal{M}, K^{n}\right) \cong \operatorname{Ext}^{1}\left(\mathcal{M}, K^{n-1}\right)=0$, hence $K^{n} \in \mathcal{M}{ }_{2}^{\perp}$. Continuing in this way we have finally isomorphisms $\operatorname{Ext}^{n}\left(\mathcal{M}, K^{n}\right) \cong \operatorname{Ext}^{n-1}\left(\mathcal{M}, K^{n-1}\right) \cong \cdots \cong \operatorname{Ext}^{1}\left(\mathcal{M}, K^{1}\right)=0$. Hence $K^{n} \in \mathcal{M}_{n}^{\perp}=\mathcal{M}$ and therefore $\operatorname{pd} \mathbb{H}(A) \leqslant n$. We conclude that gl. dim $\bmod -\mathcal{M}=n+2$.

Now let $A \in{ }_{n} \mathcal{N} \mathcal{M}$. By applying $\mathscr{A}(-, \mathcal{M})$ to the extension $0 \longrightarrow K^{1} \longrightarrow M^{0} \longrightarrow A \longrightarrow 0$, we have $\operatorname{Ext}^{i}\left(K^{1}, \mathcal{M}\right)=0,1 \leqslant i \leqslant n-1$. Using this and applying $\mathscr{A}(-, \mathcal{M})$ to the extension $0 \longrightarrow K^{2} \longrightarrow M^{1} \longrightarrow$ $K^{1} \longrightarrow 0$, we have $\operatorname{Ext}^{i}\left(K^{2}, \mathcal{M}\right)=0,1 \leqslant i \leqslant n-2$. Continuing in this way we finally have $\operatorname{Ext}^{1}\left(K^{n-1}, \mathcal{M}\right)=0$. Since $\operatorname{pd} \mathbb{H}(A) \leqslant n$, we have $K^{n} \in \mathcal{M}$ and therefore the extension $0 \longrightarrow K^{n} \longrightarrow M^{1} \longrightarrow K^{n-1} \longrightarrow 0$ splits, hence $K^{n-1} \in \mathcal{M}$. Since $\operatorname{Ext}^{1}\left(K^{n-2}, \mathcal{M}\right)=0$, the extension $0 \longrightarrow K^{n-1} \longrightarrow M^{1} \longrightarrow K^{n-2} \longrightarrow 0$ splits and therefore $K^{n-2} \in \mathcal{M}$. Continuing in this way we see the objects K^{i} lie in \mathcal{M} and therefore since Ext ${ }^{1}(A, \mathcal{M})=0$, we infer that the extension that the extension $0 \longrightarrow K^{1} \longrightarrow M^{0} \longrightarrow A \longrightarrow 0$ splits. Then $A \in \mathcal{M}$ as a direct summand of M^{0}. We conclude that $A \in \mathcal{M}$, i.e. ${ }_{n} \mathcal{M} \mathcal{M}=\mathcal{M}$.

Corollary 10.4. Let \mathscr{A} be an abelian category with enough projectives and enough injectives. Let \mathcal{M} be a functorially finite subcategory of \mathscr{A}. Then the following are equivalent.
(i) $\operatorname{Proj} \mathscr{A} \varsubsetneqq \mathcal{M}$ and $\mathcal{M}_{n}^{\perp}=\mathcal{M}$.
(ii) $\operatorname{Inj} \mathscr{A} \varsubsetneqq \mathcal{M}$ and ${ }_{n}{ }_{n} \mathcal{M}=\mathcal{M}$.
(iii) \mathcal{M} is ${ }_{n}^{\neq}$-rigid,, $\operatorname{Proj} \mathscr{A} \varsubsetneqq \mathcal{M}$ or $\operatorname{Inj} \mathscr{A} \varsubsetneqq \mathcal{M}$ and gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$.

If (i) holds, then: $\mathcal{M} \subseteq G \operatorname{Groj} \mathscr{A}$ if and only if \mathscr{A} is Frobenius if and only if $\mathcal{M} \subseteq G \operatorname{lnj} \mathscr{A}$. If this is the case, \mathscr{A} is Krull-Schmidt and \mathcal{M} is of finite representation type, then:

$$
\text { rep. } \operatorname{dim} \mathscr{A} \leqslant n+2
$$

Proof. (i) \Rightarrow (ii), (iii) By Proposition 10.3 we have gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2,{ }_{n}{ }^{1} \mathcal{M}=\mathcal{M}$ and $\operatorname{Inj} \mathscr{A} \subseteq \mathcal{M}$. If $\operatorname{Inj} \mathscr{A}=\mathcal{M}$, then clearly $\mathscr{A}=\mathcal{M}$, hence $\mathscr{A}=\operatorname{Proj} \mathscr{A}=\mathcal{M}$ since then \mathscr{A} is semisimple. Hence $\operatorname{Inj} \mathscr{A} \neq \mathcal{M}$. The implication (ii) \Rightarrow (i) follows by duality and is left to the reader.
(iii) \Rightarrow (ii) Let $A \in{ }_{n}^{\perp} \mathcal{M}$. Since gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$, it follows that $\mathrm{pd} \mathbb{H}(A) \leqslant n$ and therefore we have an \mathcal{M}-resolution $0 \longrightarrow M_{A}^{n} \longrightarrow M_{A}^{n-1} \longrightarrow \cdots \longrightarrow M_{A}^{1} \longrightarrow M_{A}^{0} \longrightarrow A \longrightarrow 0$ of A of length $\leqslant n$. Applying to the extension $0 \longrightarrow K_{A}^{1} \longrightarrow M^{0} \longrightarrow A \longrightarrow 0$ the functor $\mathscr{A}(-, \mathcal{M})$, we see that $K_{A}^{1} \in{ }_{n-1}^{1} \mathcal{M}$ and then by induction $K_{A}^{n-i} \in \frac{1}{i} \mathcal{M}, 1 \leqslant i \leqslant n-1$. In particular since $K_{A}^{n-1} \in{ }^{\perp}{ }_{1} \mathcal{M}$, the extension $0 \longrightarrow M_{A}^{n} \longrightarrow M_{A}^{n-1} \longrightarrow K_{A}^{n-1} \longrightarrow 0$ splits and therefore $K_{A}^{n-1} \in \mathcal{M}$. Since $K_{A}^{n-2} \in \frac{1}{2} \mathcal{M}$, it follows that the extension $0 \longrightarrow K_{A}^{n-1} \longrightarrow M_{A}^{n-2} \longrightarrow K_{A}^{n-2} \longrightarrow 0$ splits and therefore $K_{A}^{n-2} \in \mathcal{M}$. Continuing in this way we see that the extension $0 \longrightarrow K_{A}^{1} \longrightarrow M_{A}^{0} \longrightarrow A \longrightarrow 0$ splits and therefore $A \in \mathcal{M}$. We infer that ${ }_{n}{ }_{n} \mathcal{M}=\mathcal{M}$.

Assume now that one of the equivalent conditions (i)-(iii) hold. If \mathscr{A} is Frobenius, then $\mathscr{A}=$ GProj \mathscr{A} and then $\mathcal{M} \subseteq G \operatorname{Proj} \mathscr{A}$. Conversely assume that $\mathcal{M} \subseteq G \operatorname{Proj} \mathscr{A}$. Since any object of \mathscr{A} admits an \mathcal{M}-resolution of lenght $\leqslant n$, it follows that \mathscr{A} is Gorenstein and $G-\operatorname{dim} \mathscr{A} \leqslant n$. Since \mathcal{M} contains the injectives, it follows that any injective object is Gorenstein-projective. Since spli $\mathscr{A}<\infty$ it follows that any injective object has finite projective dimension and therefore any injective object is projective since it is Gorenstein-projective. Now if P is a projective object, then let $(\dagger): 0 \longrightarrow P \longrightarrow I \longrightarrow A \longrightarrow 0$ be exact, where I is injective. Applying $\mathscr{A}(\mathcal{M},-)$, we have directly that $\mathscr{A} \in \mathcal{M}_{n-1}^{\perp}$ and there is an isomorphism $\operatorname{Ext}^{n}(\mathcal{M}, A) \cong \operatorname{Ext}^{n+1}(\mathcal{M}, P)$. However since silp $\mathscr{A}=\mathrm{G}-\operatorname{dim} \mathscr{A} \leqslant n$, we infer that id $P \leqslant n$, so $\operatorname{Ext}^{n+1}(\mathcal{M}, P)=0$. Hence Ext ${ }^{n}(\mathcal{M}, A)=0$ and therefore $A \in \mathcal{M}_{n}^{\perp}=\mathcal{M}$. Clearly then the extension (\dagger) splits, so P is injective as a direct summand of I. Hence \mathscr{A} is Frobenius. If moreover \mathscr{A} is Krull-Schmidt and $\mathcal{M}=\operatorname{add} M$, then add M is functorially finite
in \mathscr{A} and M contains as a direct summand a projective generator and an injective cogenerator of \mathscr{A}. Since

From now on we assume that the abelian category \mathscr{A} has enough projectives. We consider the stable category GProj \mathscr{A} of Gorenstein-projective objects of \mathscr{A} modulo projectives as a triangulated category with suspension functor Ω^{-1}. For any full subcategory \underline{X} of $G \operatorname{Proj} \mathscr{A}$, we denote by $\mathcal{M}=\pi^{-1} \underline{\mathcal{X}}$ the pre-image of $\underline{\mathcal{X}}$ under the projection functor $\pi: G \operatorname{Groj} \mathscr{A} \longrightarrow \underline{\text { GProj }} \mathscr{A}$. Note that $\operatorname{Proj} \mathscr{A} \subseteq \mathcal{M} \subseteq G \operatorname{Proj} \mathscr{A}$.
Lemma 10.5. (i) \underline{X} is contravariantly finite in $\underline{G P r o j} \mathscr{A}$ if and only if \mathcal{M} is contravariantly finite in $G \operatorname{Proj} \mathscr{A}$.
(ii) If $\operatorname{Proj} \mathscr{A}$ is covariantly finite in \mathscr{A}, then \underline{X} is covariantly finite in $\underline{G P r o j} \mathscr{A}$ if and only if \mathcal{M} is covariantly finite in GProj \mathscr{A}.
(iii) $\underline{X}_{n}^{\top}=\underline{X}$ if and only if $\mathcal{M}_{n}^{\perp} \cap G \operatorname{Proj} \mathscr{A}=\mathcal{M}$.
(iv) If \mathscr{A} is Gorenstein, then:
(a) \underline{X} is contravariantly finite in $G \operatorname{Proj} \mathscr{A}$ if and only if \mathcal{M} is contravariantly finite in \mathscr{A}.
(b) If If $\operatorname{Proj} \mathscr{A}$ is covariantly finite in \mathscr{A}, then $\underline{\mathcal{X}}$ is covariantly finite in GProj \mathscr{A} if and only if \mathcal{M} is covariantly finite in \mathscr{A}.

Proof. (i) First let \underline{X} be contravariantly finite in $\underline{G P r o j} \mathscr{A}$ and let $G \in \operatorname{GProj} \mathscr{A}$. Let $\underline{f}_{G}: \underline{X}_{G} \longrightarrow \underline{G}$ be a right \underline{X}-approximation of \underline{G}. Let M_{G} in \mathcal{M} be such that $\underline{M}_{G}=\underline{X}_{G}$. Then we have a map $f_{G}: M_{G} \longrightarrow G$ which may chosen to be an epimorphism since \mathcal{M} contains the projectives. If $\alpha: M^{\prime} \longrightarrow G$ is a map, where $M^{\prime} \in \mathcal{M}$, then we have a factorization $\underline{\alpha}=\underline{\rho} \circ \underline{f}_{G}$ for some map $\rho: \underline{M}^{\prime} \longrightarrow \underline{X}_{G}$. Hence we have factorization $\alpha-\rho \circ f=\kappa \circ \varepsilon$, where $\kappa: M^{\prime} \longrightarrow P$ and $\varepsilon: P \longrightarrow G$ and P is projective. Since f_{G} is an epimorphism, there exists a map $\lambda: P \longrightarrow M_{G}$ such that $\lambda \circ f_{G}=\varepsilon$. Then $\alpha=(\rho+\kappa \circ \lambda) \circ f_{G}$, i.e. the map \underline{f}_{G} is a right \mathcal{M}-approximation. Conversely if \mathcal{M} is contravariantly finite and $f: M_{G} \longrightarrow G$ is a right \mathcal{M}-approximation of $G \in \operatorname{GProj} \mathscr{A}$, then clearly the map $\underline{f}_{G}: \underline{M}_{G} \longrightarrow \underline{G}$ is a right \underline{X}-approximation of \underline{G}.
(ii) Clearly contravariant finiteness of \mathcal{M} in GProj \mathscr{A} implies contravariant finiteness of \underline{X} in GProj \mathscr{A}. Conversely let \underline{X} be contravariantly finite in $G \operatorname{Proj} \mathscr{A}$ and let $G \in G \operatorname{Proj} \mathscr{A}$. Let $\underline{f}^{G}: \underline{G} \longrightarrow \underline{X}^{G}$ be a
 is Gorenstein-projective, there exists a short exact sequence $0 \longrightarrow G \longrightarrow P^{G} \longrightarrow G^{\prime} \longrightarrow 0$, where G^{\prime} is Gorenstein-projective. Then the map $\mu: G \longrightarrow P^{G}$ is clearly a left projective approximation of G. It is easy to see that the map $f^{G}:=\left(f_{1}^{G}, \mu\right): G \longrightarrow M_{1} \oplus P^{G}$ is a left \mathcal{M}-approximation of G.
(iii) By Remark 8.2 we have isomorphisms, $\forall G, G_{1}, G_{2} \in \operatorname{GProj} \mathscr{A}, \forall A \in \mathscr{A}, \forall k \geqslant 1$:

$$
\operatorname{Ext}^{k}(G, A) \stackrel{\cong}{\cong} \operatorname{Hom}\left(\Omega^{k} G, A\right) \quad \text { and } \quad \operatorname{Ext}^{k}\left(G_{1}, G_{2}\right) \xrightarrow{\cong} \underline{\operatorname{Hom}}\left(G_{1}, \Omega^{-k} G_{2}\right)
$$

It follows directly that: $\underline{X}_{n}^{\top}=\underline{X}$ if and only if $\mathcal{M}_{n}^{\perp} \cap G \operatorname{Proj} \mathscr{A}=\mathcal{M}$.
(iv) Part (a) follows from (iii) since if \mathscr{A} is Gorenstein, then GProj \mathscr{A} is contravariantly finite in \mathscr{A} and (b) follows from (iii) since if $\operatorname{Proj} \mathscr{A}$ is covariantly finite in \mathscr{A} and \mathscr{A} is Gorenstein, then GProj \mathscr{A} is covariantly finite in \mathscr{A}, see [7].

Let \mathscr{A} be an abelian category with enough projectives, resp. injectives. Then \mathscr{A} is called (projectively), resp. (injectively) Gorenstein if there exists $n \geqslant 0$, such that any object of \mathscr{A} admits a exact resolution of length $\leqslant n$ consisting of Gorenstein-projective, resp. Gorenstein-injective, objects. The minimum such n is called the Gorenstein dimension of \mathscr{A}, denoted by G-dim \mathscr{A}, and coincides with the Gorenstein dimension as defined in Section 7, if \mathscr{A} has enough projectives and enough injectives, see [12].

Let \mathcal{U}, \mathcal{V} be full subcategories of \mathscr{A}. Then we define $\mathcal{U} \diamond \mathcal{V}$ to be the full subcategory

$$
\mathcal{U} \diamond \mathcal{V}=\operatorname{add}\{A \in \mathscr{A} \mid \exists \text { an exact sequence }: 0 \longrightarrow U \longrightarrow A \longrightarrow V \longrightarrow 0, \text { where } U \in \mathcal{U} \text { and } V \in \mathcal{V}\}
$$

Inductively we define $\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}, \forall n \geqslant 1$, for full subcategories \mathcal{U}_{i} of \mathscr{A}. Clearly the operation \diamond is associative and clearly $\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}$ coincides with the full subcategory Filt $\left(\mathcal{U}_{1}, \cdots, \mathcal{U}_{n}\right)$ of \mathscr{A} consisting of direct summands of objects A which admit a finite filtration

$$
0=A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{n-1} \subseteq A_{n}=A
$$

such that $A_{k} / A_{k-1} \in \mathcal{U}_{k}, 1 \leqslant k \leqslant n$. Hence: $\quad \operatorname{Filt}\left(\mathcal{U}_{1}, \mathcal{U}_{2}, \cdots, \mathcal{U}_{n}\right)=\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}$.
If \mathcal{M} is contained in GProj \mathscr{A}, then we denote by $\Omega^{-1} \mathcal{M}$ the full subcategory of GProj \mathscr{A} consisting of all direct summands of objects A for which there exists an exact sequence $0 \longrightarrow M \longrightarrow P \longrightarrow A \longrightarrow 0$, where $M \in \mathcal{M}$ and P is projective. Then $\Omega^{-k} \mathcal{M}$ is defined inductively for $k \geqslant 2$.

Now we are ready to prove the main result of this section.

Theorem 10.6. Let \mathscr{A} be an abelian category with enough projectives. Let \underline{X} be a full subcategory of GProj \mathscr{A} and set $\mathcal{M}=\pi^{-1} \underline{\mathcal{X}}$. Then the following are equivalent.
(i) \mathscr{A} is Gorenstein and \underline{X} is an $(n+1)$-cluster tilting subcategory of GProj \mathscr{A}.
(ii) \mathcal{M} is contravariantly finite in \mathscr{A} and $\mathcal{M}_{n}^{\perp} \cap \operatorname{GProj} \mathscr{A}=\mathcal{M}$ and gl. $\overline{\operatorname{dim} \bmod } \mathcal{M}<\infty$.

If (i) holds and $\underline{X} \neq 0$, then ${ }_{n}{ }^{\mathcal{M}} \cap \mathrm{GProj} \mathscr{A}=\mathcal{M}$, we have an equality

$$
\begin{equation*}
\mathscr{A}=\mathcal{M} \diamond \Omega^{-1} \mathcal{M} \diamond \cdots \diamond \Omega^{-n} \mathcal{M} \diamond \operatorname{Proj}^{\leqslant d} \mathscr{A} \tag{10.5}
\end{equation*}
$$

where $\mathrm{G}-\operatorname{dim} \mathscr{A}=d$, and gl . $\operatorname{dim} \bmod -\mathcal{M}$ is bounded as follows:

$$
\begin{equation*}
n+2 \leqslant \text { gl. } \operatorname{dim} \bmod -\mathcal{M} \leqslant \max \{n, \text { G-dim } \mathscr{A}\}+3 \tag{10.6}
\end{equation*}
$$

Moreover $\operatorname{pd}_{\text {mod- }}^{\operatorname{M}} F=n+2, \forall F \in \bmod -\mathcal{X}, F \neq 0$, and:
(a) If G-dim $\mathscr{A}<n$, then: gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$.
(b) If G-dim $\mathscr{A}=n$, then: gl. $\operatorname{dim} \bmod -\mathcal{M} \in\{n+2, n+3\}$.
(c) If G-dim $\mathscr{A}>n$, then: $n+2 \leqslant \operatorname{gl} \cdot \operatorname{dim} \bmod -\mathcal{M} \leqslant G-\operatorname{dim} \mathscr{A}+3$.

Proof. (ii) \Rightarrow (i) Contravariant finiteness of \mathcal{M} in \mathscr{A} implies that \mathcal{M} has weak kernels, so mod- \mathcal{M} is abelian. Assume that gl. $\operatorname{dim} \bmod -\mathcal{M}=t<\infty$. Then pd $\mathbb{H}(A) \leqslant t$ and since \mathcal{M} contains the projectives, this implies that any object A in \mathscr{A} admits a finite \mathcal{M}-resolution of length $\leqslant t$. Since \mathcal{M} consists of Gorenstein-projectives, it follows that the Gorenstein dimension of \mathscr{A} is at most t, hence \mathscr{A} is Gorenstein by [12]. Since $\mathcal{M}_{n}^{\perp} \cap$ GProj $\mathscr{A}=$ \mathcal{M}, by Lemma 10.5 we have $\underline{X}_{n}^{\top}=\underline{X}$, so \underline{X} is an $(n+1)$-cluster tilting subcategory of GProj \mathscr{A}.
(i) \Rightarrow (ii) Since \underline{X} is $(n+1)$-cluster tilting and \mathscr{A} is Gorenstein, it follows from Lemma 10.5 that \mathcal{M} is contravariantly finite in \mathscr{A} and therefore \mathcal{M} has weak kernels. Then mod- \mathcal{M} is abelian. We use throughout the restricted Yoneda functor

$$
\mathbb{H}: \mathscr{A} \longrightarrow \bmod -\mathcal{M}, \quad \mathbb{H}(A)=\left.\mathscr{A}(-, A)\right|_{\mathcal{M}}
$$

Since by Lemma 10.5 we have $\mathcal{M}_{n}^{\perp} \cap G \operatorname{Proj} \mathscr{A}=\mathcal{M}$, it suffices to show that gl. $\operatorname{dim} \bmod -\mathcal{M}<\infty$. We show first that $\operatorname{pd} \mathbb{H}(G) \leqslant n, \forall G \in G \operatorname{Groj} \mathscr{A}$. Since $\underline{\mathcal{X}}=\underline{\mathcal{M}}$ is an $(n+1)$-cluster tilting subcategory of GProj \mathscr{A}, it follows by Theorem 6.3 that GProj $\mathscr{A}=\underline{X} \star \Omega^{-1} \underline{\mathcal{X}} \star \cdots \star \Omega^{-n} \underline{X}$. We show by induction on n that for any Gorenstein-projective object $G \overline{\text { there exists an exact resolution }}$

$$
\begin{equation*}
0 \longrightarrow M^{n} \longrightarrow M^{n-1} \longrightarrow \cdots \longrightarrow M^{1} \longrightarrow M^{0} \longrightarrow G \longrightarrow 0 \tag{10.7}
\end{equation*}
$$

of G by objects from \mathcal{M}. If $n=1$, then $\underline{G P r o j} \mathscr{A}=\underline{X} \star \Omega^{-1} \underline{X}$, hence there exists a triangle $\underline{X^{1}} \longrightarrow \underline{X}^{0} \longrightarrow$ $\underline{G} \longrightarrow \Omega^{-1} \underline{X}^{1}$. By the construction of triangles in GProj \mathscr{A}, the above triangle is induced by a short exact sequence $0 \longrightarrow M^{1} \longrightarrow M^{0} \longrightarrow G \longrightarrow 0$, where $\underline{M}^{1}=\underline{X}^{1}$ and $\underline{M}^{0}=\underline{X}^{0}$, so the M^{i} lie in \mathcal{M}. If $n=2$, then $\underline{G P r o j} \mathscr{A}=\underline{X} \star \Omega^{-1} \underline{X} \star \Omega^{-2} \underline{X}$, and therefore there exists a triangle $\underline{X}^{0} \longrightarrow \underline{G} \longrightarrow \underline{G}^{1} \longrightarrow \Omega^{-1} \underline{X}^{0}$, where \underline{X}^{0} lies in \underline{X} and \underline{G}^{1} lies in $\Omega^{-1} \underline{X} \star \Omega^{-2} \underline{X}$. Then as before, there exists a short exact sequence $0 \longrightarrow \overline{A^{1}} \longrightarrow M^{0} \longrightarrow G \longrightarrow 0$, where $\underline{A}^{1}=\Omega \underline{G}^{1}$ and $\underline{M}^{0}=\underline{X}^{0}$. Since $\Omega \underline{G}^{1}$ lies in $\underline{X} \star \Omega^{-1} \underline{X}$, it follows that there exists a short exact sequence $0 \longrightarrow M^{2} \longrightarrow M^{1} \longrightarrow A^{1} \longrightarrow 0$, where $\underline{X}^{i}=\underline{M}$. We infer that there exists a short exact sequence $0 \longrightarrow M^{2} \longrightarrow M^{1} \longrightarrow M^{0} \longrightarrow G \longrightarrow 0$, where the M^{i} lie in \mathcal{M}. Continuing by induction we have the short exact sequence (10.7). Applying \mathbb{H} to the exact resolution (10.7) and using that \mathcal{M} is n-rigid, we infer that

$$
\begin{equation*}
0 \longrightarrow \mathbb{H}\left(M^{n}\right) \longrightarrow \mathbb{H}\left(M^{n-1}\right) \longrightarrow \cdots \longrightarrow \mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow \mathbb{H}(G) \longrightarrow 0 \tag{10.8}
\end{equation*}
$$

is exact, so it is a projective resolution of $\mathbb{H}(G)$ in mod- \mathcal{M}. Hence $\operatorname{pd} \mathbb{H}(G) \leqslant n$.
Next we show that $\operatorname{pd} \mathbb{H}(A) \leqslant \max \{n, G-\operatorname{dim} \mathscr{A}\}+1, \forall A \in \mathscr{A}$. Indeed let $t:=G-\operatorname{dim} \mathscr{A}$. Consider the cotorsion pair (GProj $\mathscr{A}, \operatorname{Proj}^{<\infty} \mathscr{A}$) in \mathscr{A} and note that $\operatorname{Proj}^{<\infty} \mathscr{A}=\operatorname{Proj}{ }^{\leqslant t} \mathscr{A}$, see [12]. Let $0 \longrightarrow Y_{A} \longrightarrow$ $G_{A} \longrightarrow A \longrightarrow 0$ be the right GProj \mathscr{A}-approximation sequence of A, so Y_{A} has finite projective dimension, i.e. $\quad \mathrm{pd} Y_{A} \leqslant t$. Applying the functor $\operatorname{Hom}_{\mathscr{A}}(\mathcal{M},-)$ to the above short exact sequence, and using that $\operatorname{Ext}_{\mathscr{A}}^{n}\left(\mathcal{M}, Y_{A}\right)=0, \forall n \geqslant 1$, since \mathcal{M} consists of Gorenstein-projective objects and Y_{A} has finite projective dimension, we deduce a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{H}\left(Y_{A}\right) \longrightarrow \mathbb{H}\left(G_{A}\right) \longrightarrow \mathbb{H}(A) \longrightarrow 0 \tag{10.9}
\end{equation*}
$$

in mod- \mathcal{M}. Let $0 \longrightarrow P^{t} \longrightarrow P^{t-1} \longrightarrow \cdots \longrightarrow P^{0} \longrightarrow Y_{A} \longrightarrow 0$ be a projective resolution of Y_{A}. Applying the functor \mathbb{H}, and using that \mathcal{M} consists of Gorenstein-projective objects, we then have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{H}\left(P^{t}\right) \longrightarrow \mathbb{H}\left(P^{t-1}\right) \longrightarrow \cdots \longrightarrow \mathbb{H}\left(P^{1}\right) \longrightarrow \mathbb{H}\left(P^{0}\right) \longrightarrow \mathbb{H}\left(Y_{A}\right) \longrightarrow 0 \tag{10.10}
\end{equation*}
$$

which is a projective resolution of $\mathbb{H}\left(Y_{A}\right)$. Hence $\mathrm{pd} \mathbb{H}\left(Y_{A}\right) \leqslant t$. Now since $\operatorname{pd} \mathbb{H}\left(G_{A}\right) \leqslant n$ and $\operatorname{pd} \mathbb{H}\left(Y_{A}\right) \leqslant t$, it follows from (10.9) that pd $\mathbb{H}(A) \leqslant \max \{n, t\}+1$. We infer that $\operatorname{pd} \mathbb{H}(A) \leqslant \max \{n, \mathrm{G}-\operatorname{dim} \mathscr{A}\}+1, \forall A \in \mathscr{A}$. Next we show that gl. $\operatorname{dim} \bmod -\mathcal{M} \leqslant \max \{n, G-\operatorname{dim} \mathscr{A}\}+3$. For any object $F \in \bmod -\mathcal{M}$, considering the exact sequence (10.2) associated to F, it follows directly that $\mathrm{pd} F \leqslant \mathrm{pd} \mathbb{H}\left(A_{F}\right)+2$. Hence by the above we have $\mathrm{pd} F \leqslant \max \{n$, G-dim $\mathscr{A}\}+3$. Thus gl. $\operatorname{dim} \bmod -\mathcal{M} \leqslant \max \{n$, G- $\operatorname{dim} \mathscr{A}\}+3<\infty$.

Now assume that (i) holds and $\underline{X} \neq 0$, or equivalently $\mathcal{M} \neq \operatorname{Proj} \mathscr{A}$. Then Proposition 10.3 shows that gl. $\operatorname{dim} \bmod -\mathcal{M} \geqslant n+2$. Hence we have the bounds $n+2 \leqslant \operatorname{gl} \cdot \operatorname{dim} \bmod -\mathcal{X} \leqslant \max \{n, G-\operatorname{dim} \mathscr{A}\}+3$. If $0 \neq F \in \bmod -X$, then F admits a presentation $0 \longrightarrow \mathbb{H}\left(A_{F}\right) \longrightarrow \mathbb{H}\left(M^{1}\right) \longrightarrow \mathbb{H}\left(M^{0}\right) \longrightarrow F \longrightarrow 0$, where the map $M^{1} \longrightarrow M^{0}$ is epic. Since the M^{i} are Gorenstein-projective and GProj \mathscr{A} is closed under kernels of epimorphisms, it follows that A_{F} is Gorenstein-projective. Hence by the above argument we have $\operatorname{pd} \mathbb{H}\left(A_{F}\right) \leqslant n$ and therefore pd $F \leqslant n+2$. Since by Lemma $10.2(\mathrm{iii}), \mathrm{Ext}^{k}(F, \mathbb{H}(\mathcal{M}))=0,0 \leqslant k \leqslant n+1$, and $F \neq 0$, we infer by Lemma 10.1 that $\mathrm{pd} F=n+2$.

We show equation (10.5). Let A be in \mathscr{A} and consider the exact sequence $0 \longrightarrow Y_{A} \longrightarrow G_{A} \longrightarrow A \longrightarrow 0$ where the map $G_{A} \longrightarrow A$ is a right GProj \mathscr{A}-approximation sequence of A, so Y_{A} has finite projective dimension, i.e. $Y_{A} \in \operatorname{Proj}^{<\infty} \mathscr{A}$. Since G_{A} is Gorenstein-projective, there exists a short exact sequence $0 \longrightarrow G_{A} \longrightarrow P \longrightarrow \Omega^{-1} G_{A} \longrightarrow 0$, where P is projective and $\Omega^{-1} G_{A}$ is Gorenstein-projective. Then the composition $Y_{A} \longrightarrow G_{A} \longrightarrow P$ induces a short exact sequence $0 \longrightarrow Y_{A} \longrightarrow P \longrightarrow Y^{A} \longrightarrow 0$ and clearly Y^{A} has finite projective dimension. By diagram chasing then it is easy to see that there exists a short exact sequence $0 \longrightarrow G_{A} \longrightarrow A \oplus P \longrightarrow Y^{A} \longrightarrow 0$. Hence $A \in G \operatorname{Proj} \mathscr{A} \diamond \operatorname{Proj}{ }^{<\infty} \mathscr{A}$. Using that $\operatorname{GProj} \mathscr{A}=\mathcal{X} \star \mathcal{X}[1] \star \cdots \star \mathcal{X}[n]$, it follows that GProj $\mathscr{A}=\mathcal{M} \diamond \Omega^{-1} \mathcal{M} \diamond \cdots \diamond \Omega^{-n} \mathcal{M}$. We infer that $\mathscr{A}=\overline{\mathrm{GProj}} \mathscr{A} \diamond \operatorname{Proj}^{<\infty} \mathscr{A}=\mathcal{M} \diamond \Omega^{-1} \mathcal{M} \diamond \cdots \diamond \Omega^{-n} \mathcal{M} \diamond \operatorname{Proj}^{<\infty} \mathscr{A}$.
(a) If $\mathrm{G}-\operatorname{dim} \mathscr{A}<n$, then any object $Y \in \mathscr{A}$ of finite projective dimension has projective dimension $<n$. It follows that $\operatorname{pd} \mathbb{H}(Y)<n$. Now the short exact sequence (10.9) induces a long exact sequence, $\forall A \in \mathscr{A}$:

$$
\cdots \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{n}\left(\mathbb{H}\left(G_{A}\right),-\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{n}\left(\mathbb{H}\left(Y_{A}\right),-\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{n+1}(\mathbb{H}(A),-) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{n+1}\left(\mathbb{H}\left(G_{A}\right),-\right) \longrightarrow \cdots
$$

Since we have $\operatorname{pd} \mathbb{H}\left(G_{A}\right) \leqslant n$ and $\operatorname{pd} \mathbb{H}\left(Y_{A}\right)<n$, we have $\operatorname{Ext}_{\mathscr{A}}^{n+1}(\mathbb{H}(A),-)=0$ and therefore $\operatorname{pd} \mathbb{H}(A) \leqslant n$. It follows that gl. $\operatorname{dim} \bmod -\mathcal{M} \leqslant n+2$ and consequently $\mathrm{gl} . \operatorname{dim} \bmod -\mathcal{M}=n+2$.
(b) If $G-\operatorname{dim} \mathscr{A}=n$, then as above we have $\operatorname{Ext}_{\mathscr{A}}^{n+2}(\mathbb{H}(A),-)=0$, so $\operatorname{pd} \mathbb{H}(A) \leqslant n+1$ and therefore gl. dim mod- $\mathcal{M} \leqslant n+3$. Then from (10.6) we have $n+2 \leqslant \mathrm{gl}$. dim mod- $\mathcal{M} \leqslant n+3$.
(c) If G-dim $\mathscr{A}>n$, then as above we have $\operatorname{Ext}_{\mathscr{A}}^{\mathrm{G}-\operatorname{dim} \mathscr{A}+2}(\mathbb{H}(A),-)=0$, so pd $\mathbb{H}(A) \leqslant \mathrm{G}-\operatorname{dim} \mathscr{A}+1$ and therefore gl . $\operatorname{dim} \bmod -\mathcal{M} \leqslant \mathrm{G}-\operatorname{dim} \mathscr{A}+3$. Then from (10.6) we have $n+2 \leqslant \operatorname{gl}$. $\operatorname{dim} \bmod -\mathcal{M} \leqslant \mathrm{G}-\operatorname{dim} \mathscr{A}+3$.

Corollary 10.7. Let \mathscr{A} be a Gorenstein abelian category with enough projectives. Let \underline{X} be an $(n+1)$-cluster tilting subcategory of $\operatorname{GProj} \mathscr{A}$ and let $\mathcal{M}=\pi^{-1} \underline{\mathcal{X}}$. Then for any $F \in \bmod -\mathcal{X}$ and any $G \in \bmod -\mathcal{X}$ we have:

$$
\operatorname{Ext}^{k}(F, G)=0, \quad \forall k \geqslant 0, \quad k \neq n+2-i, \cdots, n+2, \quad 0 \leqslant i=\operatorname{pd} G \leqslant \max \{n, \mathrm{G}-\operatorname{dim} \mathscr{A}\}+3
$$

Proof. By Theorem 10.6 we have $\mathrm{pd} F=n+2$ and $^{\operatorname{Ext}}{ }^{k}(F, \mathbb{H}(\mathcal{M}))=0, \forall k \geqslant 0, k \neq n+2$. On the other by the same Theorem we know that $\operatorname{pd} G \leqslant \max \{n, G-\operatorname{dim} \mathscr{A}\}+3$. Now the assertion follows easily by induction on pd G by applying the functor $(F,-)$ to a the extensions $0 \longrightarrow \Omega^{j} G \longrightarrow \mathbb{H}\left(N^{j-1}\right) \longrightarrow \Omega^{j-1} G \longrightarrow 0$.

Corollary 10.8. Let \mathscr{A} be Gorenstein and assume that GProj \mathscr{A} is $(n+1)$-Calabi-Yau. Let $\underline{\mathcal{X}}$ be an $(n+1)$ -
 is 1-Gorenstein and the stable triangulated category GProj mod- \mathcal{X} is $(n+2)$-Calabi-Yau.

Keller and Reiten proved that if X is a 2 -cluster tilting subcategory of \mathscr{A}, where \mathscr{A} is a Frobenius abelian category and if \mathscr{A} is 2-Calabi-Yau, then gl. dim mod- $\mathcal{M}=3$, where $\mathcal{M}=\pi^{-1}(\underline{X})$, see [21]. The following direct consequence of Theorem 10.6 and Corollary 10.4, generalizes the result of Keller-Reiten for any ($n+1$)-cluster tilting subcategory, $n \geqslant 2$, without assuming the Calabi-Yau condition.

Corollary 10.9. Let \mathscr{A} be an abelian category with enough projectives and enough injectives. For a full subcategory $\mathcal{M} \subseteq G \operatorname{Proj} \mathscr{A}$, the following are equivalent.
(i) \mathscr{A} is Frobenius and $\underline{\mathcal{M}}$ is an $(n+1)$-cluster tilting subcategory of \mathscr{A}.
(ii) \mathcal{M} is contravariantly finite in \mathscr{A}, contains the projectives, and $\mathcal{M}_{n}^{\perp}=\mathcal{M}$.
(iii) \mathcal{M} is covariantly finite in \mathscr{A}, contains the injectives, and ${ }_{n}{ }_{n} \mathcal{M}=\mathcal{M}$.
(iv) \mathcal{M} is n-rigid, contravariantly in \mathscr{A} and contains the projectives, or covariantly finite and contains the injectives, and gl. $\operatorname{dim} \bmod -\mathcal{M}=n+2$.

In particular if \mathscr{A} is a Krull-Schmidt Frobenius abelian category and \mathcal{X} is an $(n+1)$-cluster subcategory of \mathscr{A} which is of finite representation type, then

$$
\text { rep. } \operatorname{dim} \mathscr{A} \leqslant n+2
$$

Corollary 10.10. For an Artin algebra Λ the following are equivalent.
(i) Λ is Gorenstein and $\operatorname{Gproj} \Lambda$ contains a $(n+1)$-cluster tilting object.
(ii) \mathscr{A} contains a generator M such that add $M=M_{n}^{\perp} \cap G \operatorname{proj} \Lambda$ and gl. $\operatorname{dim} \operatorname{End}_{\Lambda}(M)<\infty$.

If (ii) holds, then M is a cogenerator if and only if Λ is self-injective and then rep. $\operatorname{dim} \Lambda \leqslant n+2$.
Corollary 10.11. Let Λ be an Artin algebra and let \underline{T} be an $(n+1)$-cluster tilting object of $\operatorname{Gproj} \Lambda, n \geqslant 1$. If $\operatorname{Ext}^{t}(T, \mathrm{D} \operatorname{Tr} T)=0,2 \leqslant t \leqslant n-k+1$, where $0 \leqslant k \leqslant n-1$, then the cluster tilting algebra mod-End $_{\Lambda}(T)$ is k-Gorenstein. Moreover for $0 \leqslant k \leqslant 1$, the stable category Gproj $_{\bmod -\text { End }_{\Lambda}(T) \text { is }(n+2) \text {-Calabi-Yau provided }}$ that Gproj Λ is $(n+1)$-Calabi-Yau.

Proof. For any $T_{1}, T_{2} \in \operatorname{add} T$ and for $2 \leqslant t \leqslant n-k+1$, we have:

$$
\operatorname{Ext}_{\Lambda}^{t}\left(T_{1}, \operatorname{DTr} T_{2}\right) \cong \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{t-1} T_{1}, \operatorname{DTr} T_{2}\right) \cong \operatorname{DHom}_{\Lambda}\left(T_{2}, \Omega^{t-1} T_{1}\right)
$$

It follows that $\underline{\operatorname{Hom}}_{\Lambda}\left(T_{2}, \Omega^{t} T_{1}\right)=0,1 \leqslant t \leqslant n-k$ and therefore the $(n+1)$-cluster tilting object \underline{T} is $(n-k)$-strong. Then the assertions follow from Corollary 10.8.

The following is also a result of Keller-Reiten, see [21, Theorem 5.4], called relative $(n+2)$-Calabi-Yau duality, proved in loc.cit., in the setting of an algebraic $(n+1)$-Calabi-Yau triangulated category over a field. However in our setting we give a different proof.

Corollary 10.12. Let \mathscr{A} be a Gorenstein abelian Hom-finite k-category over a field k, and assume that GProj \mathscr{A} is $(n+1)$-Calabi-Yau. Let $0 \neq X$ be a $(n+1)$-cluster tilting subcategory of GProj \mathscr{A}, where $d \geqslant 2$. If $\mathcal{M}=\pi^{-1} \mathcal{X}$, then for any object $F \in \bmod -\mathcal{X} \subseteq \bmod -\mathcal{M}$, there is a natural isomorphism:

$$
\mathrm{DHom}_{\mathbf{D}^{b}(\bmod -\mathcal{M})}(F,-) \xrightarrow{\cong} \operatorname{Hom}_{\mathbf{D}^{b}(\bmod -\mathcal{M})}(-, F[n+2])
$$

In particular, for any two objects $F, G \in \bmod -\mathcal{M}$ with $F \in \bmod -\mathcal{X} \subseteq \bmod -\mathcal{M}$:

$$
\operatorname{DExt}_{\text {mod- } \mathcal{M}}^{i}(F, G) \xrightarrow{\cong} \operatorname{Ext}_{\text {mod- }}^{n-i}(G, F), \quad i \in \mathbb{Z}
$$

Proof. By Theorem 1.5, gl. dim mod $-\mathcal{M}<\infty$, so by a result of Happel [14], $\mathbf{D}^{b}(\bmod -\mathcal{M})$, which coincides, up to equivalence, with the category of perfect complexes over mod- \mathcal{M}, has Auslander-Reiten triangles and therefore $\mathbf{D}^{b}(\bmod -\mathcal{M})$ admits a Serre functor which is given by $\mathcal{S}=-\left.\otimes_{\mathcal{M}}^{\mathrm{L}} \mathrm{D} \operatorname{Hom}_{\mathscr{A}}(-, ?)\right|_{\mathcal{M}}[-1]$, where $\left.\operatorname{Hom}_{\mathscr{A}}(-, ?)\right|_{\mathcal{M}}(M)=\operatorname{Hom}_{\mathscr{A}}(-, M)=\mathbb{H}(M)$. Hence we have a natural isomorphism

$$
\operatorname{DHom}_{\mathbf{D}^{b}(\bmod -\mathcal{M})}(F,-) \xrightarrow{\cong} \operatorname{Hom}_{\mathbf{D}^{b}(\bmod -\mathcal{M})}\left(-,\left.F \otimes \mathbb{\mathcal { M }}^{\mathbf{L}} \mathrm{D}_{\operatorname{Hom}}^{\mathscr{A}}(-, ?)\right|_{\mathcal{M}}[-1]\right)
$$

So it suffices to show that we have an isomorphism $\left.F[n+2] \xrightarrow{\cong} F \otimes_{\mathcal{M}} \mathrm{L}^{\mathrm{D}} \mathrm{Hom}_{\mathscr{A}}(-, ?)\right|_{\mathcal{M}}[-1]$, or equivalently an isomorphism in the derived category $\mathbf{D}^{b}(\bmod -\mathcal{M})$:

$$
\begin{equation*}
\left.F[n+3] \stackrel{\cong}{\cong} F \otimes_{\mathcal{M}}^{\mathrm{L}} \mathrm{DHom}_{\mathscr{A}}(-, ?)\right|_{\mathcal{M}} \tag{10.11}
\end{equation*}
$$

Applying the triangulated functor $-\otimes_{\mathcal{M}}^{\mathrm{L}} \mathrm{DHom}_{\mathscr{A}}(-, ?)_{\mathcal{M}}$ to projective resolution of F in (10.4) with F deleted, it is easy to see that we obtain a complex

$$
\begin{gathered}
\left.\left.\left.0 \longrightarrow \operatorname{DHom}_{\mathscr{A}}\left(M_{A_{F}}^{n},-\right)\right|_{\mathcal{M}} \longrightarrow \operatorname{DHom}_{\mathscr{A}}\left(M_{A_{F}}^{n-1},-\right)\right|_{\mathcal{M}} \longrightarrow \cdots \longrightarrow \operatorname{DHom}_{\mathscr{A}}\left(M_{A_{F}}^{0},-\right)\right|_{\mathcal{M}} \longrightarrow \\
\left.\left.\cdots \longrightarrow \operatorname{DHom}_{\mathscr{A}}\left(M^{1},-\right)\right|_{\mathcal{M}} \longrightarrow \operatorname{DHom}_{\mathscr{A}}\left(M^{0},-\right)\right|_{\mathcal{M}} \longrightarrow 0
\end{gathered}
$$

which is acyclic everywhere except in first position on the left, which corresponds to $-n-3$ degree, where the homology is given by $\left.\operatorname{DExt}^{1}\left(K_{F}^{n-1},-\right)\right|_{\mathcal{M}}$. Since GProj \mathscr{A} is $(n+1)$-Calabi-Yau, we have natural isomorphisms:

$$
\begin{aligned}
& \left.\left.\operatorname{DExt}^{1}\left(K_{F}^{n-1},-\right)\right|_{\mathcal{M}} \cong \underline{\operatorname{Dom}} \underset{\mathscr{A}}{ }\left(\Omega K_{F}^{n-1},-\right)\right|_{\mathcal{M}} \cong \underline{\left.\operatorname{Hom}_{\mathscr{A}}\left(-, \Omega^{-n-1} \Omega K_{F}^{n-1}\right)\right|_{\mathcal{M}}=} \\
& \underline{\left.\left.\left.\operatorname{Hom}_{\mathscr{A}}\left(-, \Omega^{-n} K_{F}^{n-1}\right)\right|_{\mathcal{M}} \cong \underline{\operatorname{Hom}_{\mathscr{A}}}\left(\Omega^{n}(-), K_{F}^{n-1}\right)\right|_{\mathcal{M}} \cong \operatorname{Ext}_{\mathscr{A}}^{n}\left(-, K_{F}^{n-1}\right)\right|_{\mathcal{M}} \cong F}
\end{aligned}
$$

where the last isomorphism follows from Lemma 10.2. We infer that in $\mathbf{D}^{b}(\bmod -\mathcal{M})$ we have isomorphisms

$$
\left.\left.F[n+3] \xrightarrow{\cong} \operatorname{Ext}_{\mathscr{A}}^{n}\left(-, K_{F}^{n-1}\right)\right|_{\mathcal{M}} \xrightarrow{\cong} F \otimes \mathcal{M}_{\mathcal{M}}^{\mathrm{L}} \mathrm{D} \operatorname{Hom}_{\mathscr{A}}(-, ?)\right|_{\mathcal{M}}
$$

References

[1] C. Амiot, On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. France 135 (2007), no. 3, 435-474.
[2] M. Auslander, Coherent Functors, in: Proceedings of the Conference on Categorical Algebra, La Jolla (1966), 189-231.
[3] ___ Representation dimension of Artin algebras, Queen Mary College Mathematics Notes, London (1971).
[4] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc., No. 94 (1969), 146 pp.
[5] ___ and I. Reiten, Stable Equivalence of Dualizing R-Varieties, Advances in Math. 12 (1974), 306-366.
[6] __, and S. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, (1995).
[7] A. Beligiannis, The Homological Theory of Contravariantly Finite Subcategories: Aus-lander-Buchweitz Contexts, Gorenstein Categories and (Co-)Stabilizations, Comm. Algebra 28(10), (2000), 4547-4596.
[8] _ , Relative Homological Algebra and Purity in Triangulated Categories, J. Algebra 227 (2000), 268-361.
[9] , Cohen-Macaulay Modules, (Co)Torsion Pairs, and Virtually Gorenstein Algebras, J. Algebra Vol. 288, No.1, (2005), 137-211.
[10] \qquad , On Algebras of Finite Cohen-Macaulay Tyep, preprint, (2008).
[11] \qquad and N. Marmaridis, Left Triangulated Categories Arising from Contravariantly Finite Subcategories, Comm. in Algebra 22 (1994), 5021-5036.
[12] ___ and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883 , viii +207 pp .
[13] A. Bondal and M. Kapranov, Representable functors, Serre functors, and reconstructions, Math. USSR-Izv. 35 (1990), no. 3, 519-541.
[14] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208 pp.
[15] O. Iyama, Higher Auslander-Reiten Theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), 22-50.
[16] \qquad and Y. Yoshino, Mutation in triangulated categories and rigid Cohen- Macaulay modules, Invent. Math. 172 (2008), 117-168.
[17] \qquad and S. Oppermann, Stable categories of higher preprojective algebras, preprint (2009).
[18] P. Joergensen and Th. Holm, On the relation between cluster and classical tilting, J. Pure Appl. Algebra 214, (2010), 1523-1533.
[19] B. Keller, Derived categories and universal problems, Comm. Algebra 19 (1991), no. 3, 699-747.
[20] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581.
[21] __ and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, $123-151$.
\qquad
\qquad , Acyclic Calabi-Yau Categories, to appear in Compositio Math.
[23] S. Koenig and B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z. 258 (2008), no. 1, 143-160.
[24] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, (Russian. Russian summary) Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 240-262; translation in Proc. Steklov Inst. Math. 2004, no. 3 (246), 227-248.
[25] Y. Palu, Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories, J. Pure Appl. Algebra 213 (2009), no. 7, 1438-1449.
[26] , Dimensions of triangulated categories, Journal of K-theory 1 (2008), 193-256 and errata, 257-258.
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
E-mail address: abeligia@cc.uoi.gr

